
Human Aware UAS Path Planning in Urban Environments using
Nonstationary MDPs

Rakshit Allamaraju, Hassan Kingravi, Allan Axelrod, Girish Chowdhary
Robert Grande, Jonathan P. How, Christopher Crick, Weihua Sheng

Abstract—A growing concern with deploying Unmanned Aerial
Vehicles (UAVs) in urban environments is the potential violation
of human privacy, and the backlash this could entail. Therefore,
there is a need for UAV path planning algorithms that minimize
the likelihood of invading human privacy. We formulate the
problem of human-aware path planning as a nonstationary
Markov Decision Process, and provide a novel model-based
reinforcement learning solution that leverages Gaussian process
clustering. Our algorithm is flexible enough to accommodate
changes in human population densities by employing Bayesian
nonparametrics, and is real-time computable. The approach is
validated experimentally on a large-scale long duration experi-
ment with both simulated and real UAVs.

I. INTRODUCTION

With loosening regulation from the FAA, Unmanned Aerial
Systems (UAS) are expected to be deployed for several civilian
applications, including package delivery, law enforcement and
outdoor monitoring. However, most UAS are equipped with
sensors such as cameras, which lead to growing concerns
among the public that UAS on missions that require flying
over inhabited areas could invade privacy by taking pictures
of humans in private locations (see e.g. [1,2]). Authors have
discussed whether such pictures taken by UAS would violate
the Fourth Amendment [2]. Human-aware UAS path planning
algorithms that minimize the likelihood of a UAS flying over
areas with high human density could potentially address this
issue. Such algorithms would also be useful for covert military
applications for conducting tactical missions without being
detected, and in household robotics tasks for ensuring that
robots do their jobs without interfering in human activity.

In order to create a human-aware UAS path, the UAS must
be able to plan in anticipation of where humans could be. A
naı̈ve way of planning such paths might take into account
available datasets of human population concentration as a
function of built-up space, such as census maps maintained
by counties or openly available maps such as those available
from Google. However, such publicly available data may not
be up to date and may not provide sufficient resolution to
accurately predict population densities.

Moreover, this approach fails to take into account the fact
that human concentration is uncertain, and is often a function
of the time of the day or the season. Consider, for example,
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an urban package delivery UAS. If an a priori model of
human population density over the urban area is available, then
several existing path planning algorithms, including sample-
based approaches [3] or Markov Decision Process (MDP)
[4] based approaches can be used. Even if such a model is
built from historic datasets, or heuristics (such as the fact that
highways are busy during rush hour on week-days), it would
be difficult to ensure that this model is continually updated
to account for unexpected human behavior (such as a game
day or construction). Therefore, rather than relying solely on
historic datasets, it is beneficial that the UAS maintain a
real-time updated model of the population density. Such an
model will inherently be non-stationary, so as to account for
time-dependent variations. Additionally, human behavior and
density patterns often recur. For example, business districts in
a city are busier on workdays. Ideally, if the UAS encounters
a density pattern that it has seen before, it should be able to
reclassify it as a previously-seen model and leverage a policy
that it has already computed.

In this paper, we propose a non-stationary Markov Deci-
sion Process (MDP) formulation of the human-aware path
planning problem, and propose a model-based reinforcement
learning approach as a solution to the problem. Our algorithm
learns and maintains a separate model for each distinguishable
distribution of human density. We use a Gaussian Process
(GP) Bayesian Nonparametric (BNP) model to learn the cost
associated with being seen by humans. The main benefit of
using the GP BNP is that the model grows with the data,
and little prior domain knowledge needs to be assumed. A
non-Bayesian hypothesis testing based algorithm is used to
cluster and classify GP cost models in real-time, and a model-
based policy iteration algorithm [5] is used to solve the
MDP associated with each reward model. Additionally, we
introduce the fog of war concept to drive a variance based
exploration-exploitation strategy. The addition of the fog of
war function encourages the UAS to explore regions which
it has not explored recently. This addition is crucial to ensure
that the agent is able to detect changes in the environment. The
integrated solution architecture proposed in this paper is quite
general, and can be applied to other non-stationary planning
and control problems, such as path planning in presence of
non-stationary obstacles. Furthermore, it contributes to the
literature on non-stationary MDPs with unknown switching in
the reward or transition models by providing the first GP based
BNP non-stationary MDP solution architecture that explicitly
handles the trade-off between exploration and exploitation in



dynamically evolving environments.

II. RELATED WORK

The problem of robot task planning in human contexts
has begun to be explored in the human-robot interaction
(HRI) literature. Early attempts to deploy robots into public
spaces such as museums [6] demonstrated the need to include
human behavior in path planning. Since then, research has
tended to focus on robot behavior aimed at increasing human
comfort level [7,8], taking advantage of human social behavior
[9,10], improving navigation in crowded environments [11],
and increasing predictability of a robot’s motion [12]. In our
work, we consider the privacy aspect of HRI explicitly, as
opposed to past approaches that fold privacy concerns into
humans’ general comfort levels.

Gaussian processes have previously been used successfully
in model-based reinforcement learning and approximate dy-
namic programming [13,14]. The main attraction of these
approaches has been the flexibility afforded by the GPs, and
the fact that the GP predictive variance can be used to guide
exploration of the domain to areas where the model has little
predictive confidence [15]. However, existing work on GP-
based planning, and other model-based reinforcement learning
work [16,17], has focused on stationary domains, where the
reward and the transition models are not time-varying. It is
difficult to directly extend existing work to non-stationary
domains, because the traditional GP inference algorithms
assume stationary generative distributions [18]. Even efficient
online versions of existing GP inference algorithms update the
predictive variance independent of the measurements, hence
the predictive variance can decrease even when the underlying
generative model is changing [19]. Pérez-Cruz et al. [20] and
Chowdhary et al. [21] have recently proposed adding time
to the Gaussian kernel as a way to handle time variations.
These approaches result in a forgetting factor which allows for
relearning, however determining this forgetting rate a priori
is difficult in general. More seriously, adding time to the
Gaussian kernel prevents model convergence and does not
allow for long-term learning. In our application, exploration
is expensive and results in more human sightings. Ideally, we
would like to learn a model to limit the amount of explo-
ration needed to accurately represent a model. To overcome
these limitations, we use a non-Bayesian GP clustering algo-
rithm [22] that detects changes in the underlying generative
model and is capable of detecting when a previously-seen
model appears again. In combination with the fog of war
concept to ensure sufficient and controllable exploration in
an exploration-exploitation framework. Nonstationary MDPs
have been previously explored, but the focus has either been
on regret bounds [23], or on heuristics to account for the
nonstationarity [24]. On the other hand, our algorithm learns
to leverage repeating patterns to improve performance.

III. HUMAN-AWARE PATH PLANNING USING
NONSTATIONARY MDPS

A stationary Markov decision process is a tuple
(S,A, T , r), where S is a state space, A is an action space,
T : S ×A×S → S is a transition model, and r : S ×A → R
is the reward function. Each of these quantities are fixed, and
not time varying. The goal of an agent in an MDP setting is
to maximize the expected sum of accumulated rewards over a
discounted infinite horizon, and the solution can be described
by a policy π : S → A, which gives a strategy for actions to
take at states. ∑

t=0

γtr(st, at), (1)

where at = π(st), and 0 < γ < 1. These discounted state
and action value functions (i.e. the value of a given state over
the infinite horizon, or the value of following a given action
over the same) for a given policy π are denoted by V π and
Qπ . If the reward and transition models are fixed and known,
MDPs can be solved using the Bellman equations [25]. If
the reward r(t) is not known fully, the MDP problem can
be solved using reinforcement learning approaches [26,27].
In model-based reinforcement learning, a model r̂(t) for r(t)
needs to be learned. Once the model is learned, the policy
π can be solved for using the tuple (S,A, T , r̂). The model-
based approach is chosen here because it can be more sample
efficient [28], and it has the added advantage that the learned
model of the environment can be used for other purposes.

The inference of r can be thought of as a function approxi-
mation problem. Consider the space of functions H s.t. r ∈ H
for all admissible reward functions r. In this case, r is just
a point in H. Now consider a curve in H i.e. a mapping
τ : [0,∞) → H, whose image rτ is the curve in question.
Unlike the standard definition of a curve, we do not assume
τ to be continuous, i.e. there can be a switch between two
functions at any given instant. A nonstationary MDP is an
MDP where the reward rτ arises from such a curve. That is,
the reward function can be time varying. To solve a nonsta-
tionary MDP in a model-based manner, it is necessary that a
model of rτ be learned. If H is an arbitrary space of functions,
inference of rτ becomes difficult. However, if we assume H is
a reproducing kernel Hilbert space (RKHS), we can perform
simpler inference using Gaussian process regression, which
we introduce in the next section. Another major advantage of
the GP approach is that it accommodates stochasticity in the
model built in form of a mean, measurement variance, and a
predictive variance. Furthermore, the predictive variance can
be interpreted as a measure of confidence in the model estimate
at a given point. This can be used to create a strategy for both
exploration and exploitation for the solver, as explained in the
sequel.

In this paper, the human-aware path planning problem
is formulated as a nonstationary model based reinforcement
learning problem. The reason behind this choice is that it
allows us to find a general solution in presence of a-priori
unknown and time-varying human population densities. We



assume a discrete switching model as opposed to a smoothly
changing model of human population densities. This choice is
justified because UAS missions are rarely continuous; hence
due to arbitrary pauses in-between missions, the population
density models will change significantly in a discrete fash-
ion. Furthermore, within a mission cycle, we assume that
the human density is approximately the same, although our
algorithm can support continuous changes as well as handle
stochastic variations. The probability of being seen by a human
is modeled as a Gaussian distribution centered around the
humans, and the agent receives a stochastic cost between -
1 and 0 drawn from this distribution. The net effect is that the
agent is highly likely to receive large negative reward when
it gets close to human populations. The choice of Gaussian
distribution is reasonable when the human and aircraft are
within direct line-of-sight. For other situations, a Gaussian
link-model type approach can be adopted [29]. The agent
receives a positive reward of 1 at the goal location. The
objective of the agents is to plan a path that maximizes the total
cumulative reward. Such a path would avoid human densities
and take the agent to the goal. Additional constraints such as
time or fuel can be added, but are avoided here for simplicity.
The agent transitions are assumed to be defined over a grid
on the domain, and the agent has the choice of four actions
over each grid location: forward, backward, right, or left. The
resulting policy is then further discretized to yield a set of
waypoints that describe the UAV’s desired path.

IV. GAUSSIAN PROCESS REGRESSION

A GP is defined as a collection of random variables such
that every finite subset is jointly Gaussian. The joint Gaussian
condition means that GPs are completely characterized by
their second order statistics [30]. A GP is a distribution over
functions, that is, a draw from a GP is a function. When a
process ∆ follows a Gaussian process model, then

∆(·) ∼ GP(m(·), k(·, ·)), (2)

where m(·) is the mean function, and k(·, ·) is a real-valued,
positive definite covariance kernel function. Under GP regres-
sion, the mean is assumed to lie in the class of functions H,
a reproducing kernel Hilbert space (RKHS).

Let Zτ = {z1, . . . , zτ} be a set of state measurements,
discretely sampled where {1 . . . τ} are indices for the discrete
sample times {t1, . . . , tτ}. The set defines a covariance matrix
Kij := k(zi, zj). Given indexed sets A and B, K(A,B)
denotes the kernel matrix generated by the evaluations Kij =
k(ai, bj) between the two sets, where ai ∈ A, bj ∈ B. For
each measurement zi, there is an observed output y(zi) =
m(zi) + εi, where εi ∼ N (0, ω2). The stacked outputs give
y = [y1, . . . , yτ ]T . The most common choice of covariance
kernel, and the one used here, is the Gaussian RBF kernel. It
can be shown that the mean function and posterior variance in
GP regression can be computed as functions of the covariance
matrix, which can be written as a τ × τ Gram matrix [30].

Since both Zτ and yτ grow with data, computing the
inverse becomes computationally intractable over time. This

is less of a problem for traditional GP regression applications,
which often involve finite learning samples and offline learn-
ing. However, in an online setting, the linear growth in the
sample set cardinality degrades computational performance.
Therefore, the extension of GP regression for control requires
an online method to restrict the number of data points stored
for inference. Since the set Z generates a family of functions
FZ ⊂ H whose richness characterizes the quality of the
posterior inference, a natural and simple way to determine
whether to add a new point to the subspace is to check how
well it is approximated by the elements in Z, using the kernel
linear independence test [19]. This restricted set of selected
elements, called the basis vector set, is denoted by BV .
When incorporating a new data point into the GP model, the
inverse kernel matrix can be recomputed with a rank-1 update.
When the budget is exceeded, a basis vector element must
be removed prior to adding another element [31]. There are
many schemes to remove the basis vector; in our experiments,
we rely on a method that efficiently approximates the KL
divergence between the current GP and the (t+ 1) alternative
GPs missing one data point each, then deletes removes the
data point with the largest KL divergence. See [19] for more
details. Note that for the purposes of this paper, different GP
models correspond to models trained on different data; models
with different hyperparameters are not considered.

V. GP CLUSTERING

The inference method in the previous section assumes that
the data arises from a single model. In many real-world appli-
cations however, this is not a valid assumption. In particular,
an algorithm that can determine that the current model doesn’t
match the source of data can be very useful, especially in the
context of nonstationary reward inference. An algorithm for
clustering GP models using a non-Bayesian hypothesis test is
presented here based on the GP-NBC algorithm in [22]. The
main benefit of GP-NBC here that it can be computationally
more efficient that Dirichlet Process GP clustering algorithms
since sampling based inference does not need to be performed
[32].

For a GP, the log likelihood of a subset of points y can be
evaluated as

logP (yτ | zτ ,M) = − 1
2 (yτ − µ(zτ ))TΣzτzτ (yτ − µ(zτ ))− log |Σzτzτ |1/2 + C, (3)

where µ(zτ+1) = K(Zτ , zτ+1)T (K(Zτ , Zτ ) + ω2
nI)−1Y

is the mean prediction of the model M and
Σzτ+1 = K(zτ+1, zτ+1)+ω2

nI−K(Zτ , zτ+1)T (K(Zτ , Zτ )+
ω2
nI)−1K(Zτ , zτ+1) is the conditional variance plus the

measurement noise. The log-likelihood contains two terms
which account for the deviation of points from the mean,
1
2 (yτ − µ(zτ ))TΣzτzτ (yτ − µ(zτ )), as well as the relative
certainty in the prediction of the mean at those points
log |Σzτzτ |1/2. Our algorithm, at all times, maintains a set of
points S which are considered unlikely to have arisen from
the current GP model Mc. The set S is used to create a new
GP MS , which is tested against the existing models Mi using
a non-Bayesian hypothesis test to determine whether the new



Algorithm 1 GP Clustering
Input: Initial data (Z, Y ), lps size l, model deviation η
Initialize GP Model 1 from (Z, Y ).
Initialize set of least probable points S = ∅.
while new data is available do

Denote the current model by Mc.
If data is unlikely with respect to Mc, include it in S.
if |S| == l then

for each model Mi do
Calculate log-likelihood of data points S using
having been generated from current model Mi (3)
log(S|Mi), and find highest likelihood model Mh,
making Mh current model.
Create new GP MS from S.
if 1

l (log(S|MS)− log(S|Mc)) > η then
Add MS as a new model.

end if
end for

end if
end while

model MS merits instantiation as a new model. This test is
defined as

P (y | z,Mi)

P (y | z,Mj)

M̂i

R
M̂j

η (4)

where η = (1− p)/p, and p = P (M1). If the quantity on the
left hand side is greater than η, then the hypothesis Mi (i.e.
that the data y is better represented by Mi) is chosen, and vice
versa. The overall algorithm is described in Algorithm 1; see
[22] for more details.

VI. PROPOSED SOLUTION TO NONSTATIONARY MDPS

In this section, we leverage the above ideas to create an
algorithm for human-aware path planning and more generally
for nonstationary MDPs with unknown reward models. In
the algorithm, the GP clustering algorithm builds the model
estimate r̂ti for the reward rti , at a given moment in time ti
online. Based on the current model of the reward, a decision
is made to either a) explore the state space to gather more
information for the reward, or b) exploit the model by solving
the MDP (S,A, T , r̂ti). While step b) is clear, the question
arises on how to efficiently explore S so as to minimize time
spent following a potentially suboptimal policy.

A. GP Exploration

Recall that in GP inference, the predictive variance is an
indication of the GP’s confidence in its estimate at a given
location. Therefore, in areas that have been unexplored, the
predictive variance is high and vice versa. This observation
gives us an indication of how the GP’s own estimate of the
world can be used as a tool for exploration. We define the
exploration reward r̂eti at time ti as

r̂eti (x) = Σ̂ti(x) + Υti(x), (5)

Algorithm 2 Nonstationary MDP Solver
Initialize: Initial data (X,Y ), lps size l, model deviation η,
GP parameters (σ, ω2

n), space exploration threshold ϕ.
while new data (xi, yi) is available do

Update GP cluster using Algorithm 1.
Compute exploration reward r̂eti using (5).
Compute space explored se using (6).
if se > ϕ then

Solve exploitation MDP (S,A, T , r̂ti) to get path.
else

Solve exploration MDP (S,A, T , r̂eti ) to get path.
end if

end while

where Σ̂ti(x) is the covariance of the GP over S, and Υti

is a functional over H which we will refer to as the fog of
war functional. The latter increases the predictive variance as
a function of time, so as to induce a tunable forgetting factor
into (5). This functional is defined in this manner for maximal
generality; a very simple choice however, and the one we use
in this paper is Υti(x) := max(Cfow1(t− ts), Cfow2), where
ts is the last time the model switched, and Cfow1, Cfow2 ∈
R+ are user-defined constants. This exploration reward is used
to create a new exploration MDP (S,A, T , r̂eti ), which can
be solved in order to explore S. With this intuition in place,
we can have a natural rule to make a decision on when to
explore, by computing the quantity

se(ti) = κ− 1

vol(D)

∫
D

r̂eti , (6)

where κ is the largest value of the variance (1 for the Gaussian
kernel) and D ⊂ S. The quantity se is a measure of the space
explored at an instant ti. If this is above a certain threshold,
the agent should only exploit its knowledge of S instead of
exploring. The use of predictive variance for exploration is
similar to “knownness” based model-free MDP solvers [33]
and information entropy maximizing active sensor placement
algorithm [15]. The idea is extended here to nonstationary
MDPs. In fact, it should be noted that the above idea is best
used when GP clustering is employed, and is less effective
in the case of simply using one GP. This is due to the fact
that the computation of the predictive variance depends only
on the states visited and not the observations yi. Therefore, if
a model switch occurs, a model utilizing a single GP has to
solely rely on Υti(x) to dictate when to explore, because the
predictive variance will be low for the model. These effects
are visible in the experiments in Section VII. Putting it all
together, we get the algorithm shown in Algorithm 2.

VII. EXPERIMENTAL RESULTS

A. Description of the Experiment

The goal of the experiment is to validate the performance of
the proposed planner. The mission scenario is for the agents
to go from a predefined ingress location to a predefined egress
location (referred to as the goal location) on the domain. The



agent is free to choose the optimal path over the domain to
perform its mission. Each path planning and execution instance
is termed as a run. A large-scale experiment with a total of
5, 500 runs across the environment is performed. During the
experiment, the agents face four different population densities.
The population densities switch periodically every 200 runs
for the first 4 times for each model, and then randomly. The
agents do not have an a-priori model of the underlying human
population densities, nor do they know that these are expected
to switch or know the total number of underlying models.
Furthermore, stochasticity in transitions is induced by any
tracking error the Quadrotor controller may have. The rewards
samples are stochastic draws from the corresponding GP.

The urban arena is split into grids of dimension 50 × 50,
and the agent action set consists of a decision to move to any
directly adjacent grid. Both the GP Clustering (GPC)-based
planner and the single-GP Regression (GPR)-based planner
process each reward and state location to build a GP based
generative model of the reward. A highly efficient policy-
iteration based planner [34] is used to compute the (nearly)
optimal policy at the beginning of each run using the learned
reward model. The resulting policy is further discretized into
a set of waypoints, which are then sent to the agent as the
desired path. To accommodate a large-number of runs (5, 500),
simulated UAV agents are used in the experiment. The first
four times the population density model is switched, 15 runs
are performed by the real-UAV. Hence, the real UAV performs
a total of 75 runs across the domain, with each run taking
around 2 minutes from take-off to landing. Furthermore, since
these runs are early in the learning phase of each model, the
paths flown by the UAV are exploratory, and hence longer.
The data collected by each agent is assumed to be fed to a
centralized non-stationary MDP based planner, which does not
distinguish between real and simulated agents. The simulated
agents use physics based dynamics model for a medium sized
Quadrotor and quaternion based trajectory tracking controllers
[35,36]. The real-UAVs fly in an experimental testbed; the
testbed area is 16×12 ft and it is equipped with the Optitrack
motion capture system and is designed to conduct real-time
testing in an emulated urban-environment. The testbed consists
of wooden buildings and a couple of cars(all cars not shown in
figure) that can move around, allowing us to simulate different
population densities. The testbed further includes a monitoring
facility with a Mobotix Q24 fish eye camera. The UAV used in
this experiment is the a AR-Drone Parrot 2.0 Quadrotor, which
is controlled by a client program using the Robot Operating
System (ROS) [37] and our own PI controllers.

B. Discussion of Results

Figure 1 presents the average reward accumulated and its
variance by both the planners for each of the four models.
The horizontal axis indicates the number of times each model
is active and the vertical axis indicates the cumulative reward
the agent has accumulated over the time the underlying model
was active. In model 1, both algorithms perform very similarly.
One reason for this is because GPR tends to learn model 1
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Fig. 1. Comparison between Total Rewards for each model

quickly as this is the model it was initialized in. In fact, the
GPR predictive co-variance reduces heavily while learning
this model for the first time, and even with the fog-of-war
forgetting, the co-variance does not increase again. This results
in the GPR (falsely) being confident in its model, and even
though it is updated online with new reward samples, its
estimate is highly biased towards the first model. However
for models 2, 3 and 4, our clustering base GPC algorithm
is clearly seen to have a better performance characterized by
the consistency over which the GPC based planner finds the
near optimal policy. Indeed it can be observed by noticing
that total reward accumulated over the entire duration are
nearly constant, with the small variations being attributed
to the stochasticity in the reward. Figure 2 indicates total
reward accumulated by the agent in each iteration, when the
underlying reward model is changing. Figure 3 shows the
performance of the GPC algorithm. It can be seen that the
algorithm rapidly learns the underlying model, and quickly
identifies whether the underlying model is similar to a one
it has learned before. As a result, the agent’s estimate of the
reward model converges quickly for each model. Furthermore,
because the agent can recognize a previous model that it has
already learned before, it does not have to spend a lot of time
exploring. The net effect is that the agent obtains consistently
high reward, and a long-term improvement in performance can
be seen. Whereas, when the agent follows the non clustering
based traditional GPR approach, it takes a longer time to
find the optimal policy leading to a depreciation in its total
accumulated reward over each model.

Some comments on the way exploration is handled in our
algorithm and its effect on the long-term performance are
in order here. Exploration of the domain is required by any
reinforcement learning algorithm to ensure that it obtains
sufficient information to compute the optimal policy [27]. In
our architecture, the exploration strategy is to compute a policy
that guides the agents to areas of the domain where it has little
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Fig. 2. Comparison of the accumulated rewards of GP clustering versus
GPRegression; the agent accumulates more positive rewards when clustering
models.
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Fig. 3. Plot indicating the actual model being tracked by the estimated model.
At the 200th and 400th run new models are introduced, the algorithm quickly
detects them after a brief misclassification. Note that the algorithm clusters
the underlying reward model quickly and reliably afterwards.

confidence in its model. However, as discussed in Section
VI-A, relying simply on the GP variance is not enough,
because the GP variance updates in closed-form GP algorithms
( [18,19]) do not take into account the non-stationarity in
the domain. The fog of war forgetting introduced in (5) adds
another metric on learned model confidence by ensuring that
the agent revisits parts of the domain that it has not recently
visited. Yet, exploration is costly, because this is when the
agent is likely to accumulate negative reward. Therefore, the
optimal long-term strategy should be to minimize exploration
and maximize exploitation by identifying similarities in the
underlying models. It becomes clear therefore that the per-
formance of our GPC-based planner is superior because the
GPC algorithm is able to cluster the underlying reward model
with ones that it has seen before, and hence does not need
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Fig. 4. Estimated and actual mean of a Gaussian Process reward generative
model.
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Fig. 5. Space Explored by each planner indicative of the variance

to explore as much. The estimation performance of the GPC
algorithm is visible by comparing the real and estimated
models in Figures 4. This indicates that the algorithm did not
spend time exploring areas where it cannot perform optimally.
Furthermore, Figure 5 plots the value of the exploration reward
(6) and the exploitation threshold (0.85). From this figure it
can be seen that the GPC planner spends less time exploring.
In fact, the dips in Figure 5 match the times when the agent
encounters a new model for the first time. These strong dips are
desirable, because they indicate that the algorithm has detected
that a new model has been encountered, and that it is likely to
sufficiently explore the domain to learn that model. In contrast,
only one such strong dip is seen at the beginning for the GPR
based planner.

VIII. CONCLUSION

We presented a flexible and adaptive architecture to plan
UAV paths to minimize the likelihood of the UAV being
seen by humans. Our approach handles the potential shift in



human population densities during the day, season, or time
of the year by formulating the planning problem as a non-
stationary MDP with unknown and switching reward models,
and provides a model-based reinforcement learning solution
to the problem. In our architecture, the different underlying
reward models generated by the likelihood of being seen
by humans are learned using an efficient Gaussian Process
clustering algorithm. Sufficient exploration to make clustering
decisions was induced through a novel fog of war factor
that encourages re-visiting of areas not recently visited. The
learned reward models are then used in conjunction with a
policy iteration algorithm to solve the nonstationary MDP.
The proposed architecture is validated in a long-duration
experiment with over 5500 simulated and real UAV path
planning instances. The results show that the ability of the
GP Clustering based planner to learn and recognize previously
seen population densities allows our architecture to minimize
unnecesary exploration and improve performance over the
long term over a tradtional GP regression based approach.
Although developed in context of human aware path planning,
our architecture is quiet general, and it can be extended to
solving other non-stationary MDPs as well.
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