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ABSTRACT
We present a study of using a robotic learning from demon-
stration system capable of collecting large amounts of human-
robot interaction data through a web-based interface. We
examine the effect of different perceptual mappings between
the human teacher and robot on the learning from demon-
stration. We show that humans are significantly more effec-
tive at teaching a robot to navigate a maze when presented
with information that is limited to the robot’s perception of
the world, even though their task performance measurably
suffers when contrasted with users provided with a natural
and detailed raw video feed. Robots trained on such demon-
strations learn more quickly, perform more accurately and
generalize better. We also demonstrate a set of software
tools for enabling internet-mediated human-robot interac-
tion and gathering the large datasets that such crowdsourc-
ing makes possible.

Categories and Subject Descriptors: I.2.9 [Computing
Methodologies, Artificial Intelligence, Robotics]Operator in-
terfaces

General Terms: Experimentation, Human Factors

Keywords: Crowdsourcing, interface design, learning from
demonstration

1. INTRODUCTION
Although the study of human-robot interaction has made

great strides in recent years, robots are still far from being
able to interact autonomously with humans in unstructured
human environments. If we are to bring robots into our
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homes and offices, it is not likely that their builders will
be able to engineer appropriate behaviors for every circum-
stance they might encounter, nor will the robots come with
convenient Wizards of Oz to teleoperate them at every turn.

In order to perform multiple complex unforeseen tasks,
robots will need to learn tasks taught to them by users who
are not themselves roboticists or programmers. One promis-
ing way to accomplish this learning is to demonstrate desired
tasks to a robot observer. This approach has several advan-
tages: the teacher needs no expertise in programming the
robot, nor any pedagogical insight into the learning process.
Nothing is required of the user beyond the ability to com-
plete the task, in some fashion that the robot can interpret.

However, this places the onus on inference by the learner.
Interpreting and learning from the demonstration is by no
means straightforward. One particular difficulty is the “cor-
respondence problem” [16], the fact that a human teacher
and robotic student have very different physical affordances
and sensory modalities. The problem of how to establish a
trustworthy mapping between the two is very much still an
open question.

This work studies one aspect of this problem, the mis-
match between human and robot perceptual abilities. Al-
though a robot with a camera may be able to detect, identify
and locate a few particularly salient visual cues, no existing
algorithms can possibly make sense of all of the context,
spatial relationships, identities and qualities of every object
in a scene, all of which are apparent at a glance to a human.
Thus, a robot’s attempt to learn a policy may be thwarted
by the simple fact that the human makes decisions based
on features of the environment which the robot’s sensory
apparatus is currently inadequate to perceive.

Perhaps this perceptual mismatch will eventually be ren-
dered moot by the gradual advance of robotic sensors and
processing techniques. For now, however, the answer may
well lie in manipulating the other side of the problem. Sup-
pose we limit human perception to match the robot’s. Hu-
mans are often able to make sense of profoundly impover-
ished stimuli [10]. They may be able to produce more re-
liable demonstrations for robot learning if they are forced



to operate in a robot-like sensory environment. Conversely,
their performance may be so hindered by the lack of familiar
sensory information that their actions are of no help at all.

We present evidence that suggests that users are indeed
able to provide reliable demonstrations for robot learning
when operating within such an impoverished sensory envi-
ronment. 132 subjects were given the opportunity to in-
teract online with a robot, teaching it via teleoperation to
maneuver through a simple maze and come to a stop at a
goal. If they were only shown a visualization of augmented-
reality tags, recognized as landmarks by the robot’s visual
system, their progress through the maze was much slower
and less adroit than if they were given a full video repre-
sentation of the scene. Nevertheless, the robot was able to
learn far faster and more reliably from the demonstrators
who shared the robot’s perceptual environment, and was
even able to generalize the lessons to related but novel tasks
more successfully.

2. RELATED WORK
Learning from demonstration is an approach to robot pro-

gramming in which the policy is learned using demonstra-
tions provided by a teacher [5, 2]. Learning from demon-
stration can be formulated in a variety of ways; teachers
and learners may employ a variety of mechanisms. Learn-
ing from demonstration has been examined as a supervised
learning problem, including Gaussian mixture models [8, 9],
a comparison of parametric and nonparametric classifiers
applied to the pendulum swing-up task [3], and regression
applied to robot soccer tasks [12]. As a basis for reinforce-
ment learning, demonstration has been used for value func-
tion intialization [24] and inverse reinforcement learning [1,
27]. Demonstration has also motivated learning in behavior-
based approaches [17] and in socially-driven interactions [26,
6, 21]. It has been used as a mechanism for initializing and
bootstrapping subsequent machine learning [15] in a differ-
ent paradigm. In this paper, we use decision trees to learn a
policy from demonstrations provided using remote teleoper-
ation of a robot over the web. Decision trees are a core ma-
chine learning technique known for producing classification
schemas that are particularly straightforward for humans to
understand [20]. This is not the first work to use decision
trees for learning from demonstration; early work used them
in learning to fly a simulated airplane [22].

This paper focuses on allowing a large number of users to
provide demonstrations to a robot over the web and evalu-
ating what type of visualizations result in the best policy.
A recent trend in machine learning has examined the use
of truly large data sets for learning rather than attempt-
ing to generalize from a small amount of data. Researchers
in data mining and machine translation have able to take
advantage of Google’s index of billions of crowdsourced doc-
uments and trillions of words to show that simple learn-
ing algorithms that focus upon recognizing specific features
outperform more conceptually sophisticated ones [13]. We
conjecture that similar successes would be observed if large
amounts of data could be collected for learning from demon-
stration. Human-robot interaction studies, to date, more of-
ten number in the dozens of subjects [4]. Opening up robots
to the vast number of users on the world wide web provides
the opportunity to gain a large number demonstrations from
many different users.

The robotics community has made a few forays into hu-

Figure 1: A demonstrator shows the robot how to
navigate the maze via teleoperation

man robot interaction over the internet. Goldberg et al.
placed a robot in a garden and allowed users to view and
interact with the robot over the web. Users were able to
plant seeds, water, and monitor the garden [11]. Taylor and
Trevelyan created a remote lab in which users perform tasks
involving brightly colored blocks [25]. Schulz et al. exam-
ined the use of web interfaces to remotely operate mobile
robots in public places [23]. This worked focused on let-
ting remote users interact with humans within the robots’
environment and did not examine the effect of the visualiza-
tions in a learning task. Burgard and Schulz have explored
handling delay in remote operation/teleoperation of mobile
robots using predictive simulation for visualization [7]. This
work examined how robots could be controlled when there
was a large delay in the visualization presented to the user.
The work we present in this paper may result in less de-
lay since users are presented with a reduced visualization;
however the main motivation is to examine if the resulting
demonstrations in the reduced feature spaces are better for
learning.

3. ROBOT
The robot used in the experiments is the iRobot Create

platform, on which is mounted a FitPC2 small-form-factor
computer and a Sony PS3 Eye camera capable of running
at 320x240 resolution at 120 Hz. The computer maintains
a wireless connection to the internet for servicing rosjs con-
nections (see Section 4). The various robot services com-
municate with each other via messages passed by the Robot
Operating System (ROS) [19].

The system runs our ROS-compatible drivers for the Cre-
ate platform and for the camera, as well as our extensions
to the AR Toolkit [14], allowing the robot’s visual system
to detect, localize identify augmented reality tags on which
it has trained.1

1Toward the promotion of reproducibility in robotics,
we have made these software packages available at
http://code.google.com/p/brown-ros-pkg. Our available
tools include drivers for the Create and USB webcameras,
the AR recognition package, rosjs (described in Section 4),
and others.

http://code.google.com/p/brown-ros-pkg


Figure 2: The user’s view in the video condition

The robot is able to move forward and backward and to
rotate. The frame rate of its camera is sufficient to mini-
mize blur induced by its motion, which aids in its ability to
search for and identify augmented reality tags placed in its
environment (depicted in Figure 2). If such a tag appears in
its visual field, it is able to identify the pixel locations of the
tag’s corners and, usually, the tag’s unique identification.
In addition, the robot can use the observed size of the tag
to generate a rough guess of its distance. The visual pro-
cessing involved in recognizing these tags is comparatively
robust and reliable. They are very salient, and their repre-
sentation is low-dimensional and computationally tractable,
in contrast to raw visual pixel arrays.

The tags, along with a bump sensor that detects collisions
with walls, represent the totality of the perceptual space
available to the robot for learning. We show that humans
can operate as competent teachers within this space, as well.

4. WEB INTERFACE
This work is the first experimental deployment of our rosjs

technology [18] developed in part to facilitate large-scale dis-
tributed data collection for human-robot interaction. rosjs
is a lightweight Javascript interface to ROS which exposes
a robot’s data streams and controllers as web services ac-
cessible anywhere via the Internet, as well as providing vi-
sualization tools and security mechanisms. It allows robot
application developers and researchers to produce robot con-
trollers and interfaces in the same manner as creating web
content – developers author webpages to interact with re-
mote robot services. In addition, rosjs allows users to access
and run robot applications without any installed software
beyond a simple web browser, in hopes of expanding the po-
tential pool of robot users and research subjects as wide as
possible.

132 individual subjects participated in the robot training
task from all over the world. They were invited to partici-
pate as many times as they liked; in all 276 human demon-
stration trials were collected. In the context of human-robot

Figure 3: The user’s view in the tag-only condition

interaction studies, this is a very large subject pool; we hope
that making rosjs and similar services available to the com-
munity will encourage many more such studies.

To account for possible habituation effects among the hu-
man demonstrators, all of our data analyses were performed
on both the data as a whole and the subset of data that
represented only the individual’s first exposure to the ex-
perimental setting. The only measurable difference found
was in the demonstration failure rate, to be discussed in
Section 5. For this reason, no distinction is otherwise made
between a subject’s first trial and any subsequent ones in
which she may have participated.

Upon connecting to the test website, subjects read a de-
scription of the experiment and what it was intended to ac-
complish. They were encouraged to drive the robot through
a maze as quickly and deftly as possible, and told that the
robot would be observing their actions and learning from
their example. They were instructed to click a link and be-
gin the experiment when ready.

Each subject was randomly assigned one of two condi-
tions:

1. Video View: A camera view where the subject re-
ceived a live color video feed from the robot’s camera,
and could see the floor, the walls of the maze, the
lighting and the actual augmented-reality tags mark-
ing each leg of the maze (Figure 2), or

2. Tag-only View: The only information the subject re-
ceived was a visualization of the robot’s estimate of the
position and identity of any of the four tags currently
within the robots field of view (Figure 3). This rep-
resentation took the form of blue polygons positioned
in the appropriate place on a white visual field, along
with a number matching the robot’s estimation of the
tag’s identity.

In addition, the subjects received information on whether
the robot had hit an obstacle – upon activation of a bump
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Figure 4: Time for humans to complete the maze.
NB: For all figures in this paper, error bars represent
95% confidence intervals

sensor, the screen image would flash red. Finally, each sub-
ject had available a map of the maze marked with the po-
sition of the various AR tags, to help with orientation and
navigation.

Subjects controlled the robot using the arrow keys on their
keyboard. Upon finishing, they were instructed to click a
link ending the trial, whereupon they were told whether
they had successfully navigated the maze, as well as their
performance in terms of time and number of collisions.

5. HUMAN PERFORMANCE
As expected, humans were much more adept at navigating

the maze in the video condition than in the tag-only one. On
average, those completing the maze with intact vision were
able to do so 16.03 seconds, or 36.3%, faster than those who
could only make out disembodied blue squares (see Figure
4).

Somewhat surprisingly, though, while users with video
were far faster at negotiating the maze, they were in fact
less able to maneuver through the walls without running
into them. Users who were not even able to see the walls hit
them significantly less often. As shown in Figure 5, drivers
with cameras were more than twice as likely to crash into
a wall – 1.15 crashes per demonstration as opposed to 0.45.
Part of this might be explainable by the simple fact that,
since they were driving faster, they were more limited by
their reaction time or by network latency. Indeed, transmit-
ting full video puts far more burden on a network connection
than does sending a few coordinates with which rosjs can re-
construct a visualization.

However, it is also the case that users with video were
simply able to engage in the environment more fluidly and
skillfully, in a manner more akin to controlling a car in a
video game. Users in the video condition were more apt to
send the robot along curved trajectories; they commanded
simultaneous forward and turning motion 22.5 times as often
as users navigating with only tags. Reduced to picking their
way from tag to tag, demonstrators in the latter condition
used curves only 1.62% of the time – the rest was given
over to straight lines and rotating in place. This not only
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Figure 5: Collisions per trial

kept them from hitting walls, but as we shall see, proved far
better pedagogy for the robot.

The final performance metric we applied to the human
demonstrators was to analyze their rate of failure to navi-
gate the maze at all. We expected that the unfamiliar and
difficult-to-interpret tag condition would lead to more users
abandoning the task. It did: 22.83% of tag trials failed as
opposed to 17.44% of camera trials (see Figure 6), but the
difference was not significant.

Overall trial failure was the only measure on which the
user’s familiarity with the task had a significant effect. Just
over twice as many (38 to 17) of the failures came from peo-
ple who were trying the task for the first time – a difference
right at the 95% confidence threshold. Of those 38, 26 re-
turned to participate again.

We can point to several reasons for failure. Users failed to
consider the directions, or decided they were not interested
in participating after all, or attempted to move around and
became disoriented and lost. In addition, six of the failures
were due to hardware problems – five from the robot’s tem-
porary loss of network connectivity, and one instance of the
robot actually bumping into a maze wall hard enough to
tear it loose from its moorings and block the path to the
goal. If the robot determined that the demonstration was
a failure – that is, it did not end with the robot stopped in
the goal area, having identified the tag marking the end of
the final maze leg – it marked the data as invalid and did
not consider it further. Invalid trials played no part in the
learning process to which we now turn.

6. DECISION TREES
Let X be a set of observation vectors and Xj ∈ X a set

containing all of the observations of the jth variable in the
vector, namely, one of:

• last tag seen: The identity of the most recent tag ob-
served

• tag visible: Whether that tag is currently visible

• tag x coord: The tag’s most recently observed horizon-
tal pixel coordinates (due to the fact that the camera
has fixed tilt, the y coordinate is purely a function of
distance, and so can be ignored)
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Figure 6: Percentage of trials which failed to reach
goal

• tag distance: The tag’s most recently observed dis-
tance

• bumping: Whether or not the robot is currently bump-
ing into a wall (as reported by a physical bumper on
the front of the robot)

Let X̄ ∈ X be a single observation vector containing one
instance of each of the variables above, and let Y be the
set of motor commands associated with each of those vec-
tors, as demonstrated by human teachers in one of the two
experimental conditions. Let y ∈ Y be the discrete indi-
vidual motor states such as forward, forward-and-left, right,
backward, etc.

Given X and Y , the learning problem facing the robot is
to derive a policy π : X̄ → y which will allow a robot to
navigate a maze successfully.

Having observed 132 people demonstrating 276 trials, the
robot can bring 79,726 learning examples to bear on the
problem of constructing π. Decision trees are a well-understood
and established classification method for offline learning.[20]
They run efficiently even on large datasets (O(n log n) to
learn, O(log n) to execute, on average) and have the dis-
tinct advantage that the classification process is transpar-
ent to observers. Other learning algorithms could as easily
have been chosen; our work is investigating the human com-
ponent of building these training sets, rather than the in-
duction process itself. We do, however, report experiments
which suggest that the perceptual mapping effects which we
are considering are robust to certain changes in how robot
policies are learned (see Section 7 and Figure 9).

In building a useful and compact decision tree, the sys-
tem establishes sequences of decision nodes, each of which
should be maximally informative. This notion is captured
in the concept of information gain IGj (also known as the
Kullback-Leibler divergence), a function of how much the
entropy of the remaining dataset is reduced when one of
the variables has been decided. If X is the set of random
variables representing the system’s input, Xj ∈ X is the jth
input variable, and Y is the random variable associated with
the output, the information gain is defined as:

IGj = H(Y )−H(Y |Xj) (1)

H(Y ) is the entropy before the decision is made, whileH(Y |Xj)
is the entropy once we know the value of Xj . In information-
theoretic terms, entropy is based on the surprise value of
the remaining data; if the dataset becomes much more pre-
dictable once a decision has been made, then the system has
moved from a condition of high entropy to low, and informa-
tion gain is correspondingly large. Entropy is a function of
the probabilities of variable outcomes within a set of data.
If Y = {y1, y2, . . . , yn}, the set of all possible decisions, then
P (y) is the probability of a particular choice y ∈ Y , and the
entropy of Y is defined as:

H(Y ) = −
∑

y∈Y

P (y) logP (y) (2)

In the case of discrete variables such as bumping or tag visible,
conditional entropy is defined as

H(Y |Xj) = −
∑

y∈Y

P (y)
∑

x∈Xj

P (y|x) logP (y|x) (3)

In the case of continuous variables such as tag distance, the
process is slightly more complicated. The learner must find
a split point t that maximizes the information gain for a
decision based on this variable:

H(Y |Xj , t) =

max
t

H(Y |Xj < t)P (Xj < t) +

H(Y |Xj ≥ t)P (Xj ≥ t) (4)

Finding the value t effectively transforms the continuous
variable into a binary one: is the value greater than or less
than t?. Information gain then straightforwardly becomes

IGj = H(Y )−H(Y |Xj , t) (5)

The algorithm to build the decision tree proceeds as fol-
lows.

1: function Build-Decision-Tree(X,Y )

2: if ∃y ∈ Y s.t. |y|
|Y |
≥Min-Majority then

3: return new leaf node labeled y

4: end if
5: Choose Xj (and t if necessary) to maximize IGj

6: tree ← new decision node labeled Xj

7: for all values xj ∈ Xj do

8: X̂← elements of X where Xj = xj

9: Ŷ ← elements of Y corresponding to members of
X̂

10: Attach subtree Build-Decision-Tree(X̂, Ŷ ) to
tree, with edge labeled xj

11: end for
12: return tree
13: end function

The standard algorithm sets the Min-Majority variable
above to 1, meaning that every decision path must end at a
decision supported unambiguously by the data. With noisy
data, especially when a decision tree is constructed from
continuous variables such as distance and position in the vi-
sual field, it is not uncommon for different split points of
the same variable to be maximally informative several times
in succession, or at various points along a particular path
through the tree. Such trees can grow very large indeed.
Indeed, the decision tree induced from the full set of tag
training data is made up of 10,957 nodes, while the tree
representing the camera data likewise contains 12,998. This
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does not pose a responsiveness issue for the robot – each de-
cision in such a tree (if reasonably balanced) requires about
ten steps – but it does raise the issue of whether the model
overfits its training data. To test this, we investigated the
effect of constraining the decision tree size on the robot’s
performance.

A number of different techniques exist to enforce the build-
ing of small, generalizable trees. One simple way is to adjust
the minimum majority threshold. When this threshold is
reduced far enough, the trees become small enough for in-
spection and inclusion in a paper. A very compact decision
tree built from the tag data is still quite predictive: the ac-
tions specified in the tree are correct at least 70% of the time
(Figure 7). In order to produce a tree of roughly comparable
size (Figure 8), the camera-trained tree must accept a much
lower classification rate: 54%. However, the similarity of
the two trees at this level of detail is striking. One uses tag
distance while the other uses tag visibility, but the overall
process is similar to what an engineer might have designed:
go forward if you’re far away, while turning or stopping ap-
propriately at each marker in turn. The tag-based learner is
also able to turn left if it strays too far off course, though it
does not learn the symmetric course correction to the right.

7. ROBOT PERFORMANCE IN LEARNING
FROM DEMONSTRATION

How large an effect does decision tree size have on the
robot’s ability to learn an effective maze-navigation policy?
More importantly, how quickly and easily and generally does
the robot learn when taught in its own sensory domain, as
opposed to one more natural for a human? We now turn to
the final and most important set of results presented in this
paper: the robot’s ability to translate teaching into action
and successfully perform tasks.
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Figure 9: When forced to learn the simplest possi-
ble trees, both camera and tag data produce similar
structures, and produce similar performance. As
trees are allowed to grow, the tag-trained ones be-
come marginally more effective, while the camera-
trained ones do not change at all.

To answer these questions, we performed thousands of tri-
als in the following manner. The robot was started in ap-
proximately the same position each time, facing the tag in-
dicating the first turn about 1.3 meters away. This was the
same starting position used by the human demonstrators.
The robot built a decision tree out of the data it was pro-
vided, and then began to navigate. A trial was considered
successful if the robot stopped in the correct goal position,
facing the final tag and less than 0.4 meters away – again,
the same criteria as applied to the demonstrators. If, on
the other hand, the robot stopped elsewhere, or began per-
forming repetitive sequences of actions which did not make
progress toward the goal (such as spinning in place or driving
into a wall), the trial was marked a failure.

To begin with, we consider the question of decision tree
size and generality. Taking the entire dataset for each exper-
imental condition, we allowed the robot to build a maximally-
informative tree of a certain size. When limited to ten or
fewer nodes, the learner produced the trees shown in Fig-
ures 7 and 8. The robot also built trees of ≤ 100 and ≤ 1000
nodes, as well as full, unpruned trees (Figure 9). The tree
size had a minor effect on the performance of a tag-trained
robot: the robot made it through the maze more often when
the tree was allowed to grow to unlimited size. The tree
size had no discernable effect on the camera-trained robot.
These results suggest that data overfitting in this scenario
is not a major concern.

The previous experiment provided the first indication that
humans produced better training data for a robot when
given only the sensory information accessible to the robot.
However, the camera-trained robot performed nearly as well;
it required two hundred trials to show a very significant dif-
ference (p < 0.01). A large enough quantity of data can
train a competent learner even if the quality of the data is
suboptimal.

The quality of the training data has a larger effect when
the corpus size is small. We investigated how quickly hu-
mans could teach the maze task in each test condition by
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Figure 10: Robot performance as a fraction of train-
ing trials seen. Top line represents a robot trained
on tag-only data; bottom line is a robot trained by
people with access to video. 1320 total trials.

Figure 11: A robot picks its way through a different
maze from the one it was taught to navigate.

manipulating the quantity of data a robot could use for
learning. For each trial, the robot was given access to a
certain percentage of the training corpus, and built its deci-
sion tree based only on that data. The data that would be
made available was selected at random from the entire set,
a different random selection for each individual trial. Be-
cause the largest effects were seen with small percentages of
training data, we ran the majority of trials with fewer than
20% of the test trials available to the robot. For this reason,
Figure 10 (as well as Figure 12, see below) is charted on a
logarithmic scale.

With examples from only one or a few demonstrations,
the difference in effective learning from the two datasets
is striking. Having learnt from 4% of the data – four or
five demonstrations, on average – a robot trained by teach-
ers with access to video enjoyed less than a third of the
success of a robot whose human demonstrators shared the
robot’s sensory environment. The performance premium for
tag training remains significant (p > 0.95) and is usually
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Figure 12: Robot performance in a new, unlearned
environment, as a function of the fraction of training
trials seen. As in Figure 10, top line represents tag
training data, bottom line is video. 900 total trials.
New maze environment shown in Figure 11.

very significant (p > 0.99) on training from 0.5% through
20% of data. Enough trials were run with 100% of the data
to show significance at p > 0.99 at that point as well. Inter-
mediate results from 20% to 90% are suggestive of a gradual
upward trend maintaining the performance gap between the
two training sets, but we did not perform enough trials at
those points to obtain significance.

Finally, we investigated how well these two training paradigms
generalized to similar but not identical tasks. We constructed
another maze, shown in Figure 11, for the robot to attempt
to navigate. Although getting through the maze required
the same qualitative sequence of steps – the tags were in
the same order and the turns were in the same direction
as before – the maze’s layout was otherwise very different.
Right angles were replaced by acute and obtuse ones, and
the lengths of each maze leg were changed. Once again, we
allowed the robot to learn on successively larger fractions of
the training data. The results are summarized in Figure 12.

In this case the difference between the two teaching en-
vironments was even greater. Robots in the camera learn-
ing condition were unable to negotiate the maze even once
until they had seen four or five demonstrations’ worth of
examples. Except at 0.5%, at which point neither robot
succeeded, the tag-trained robot significantly outperformed
the other at every single measured point. In addition, the
camera-trained robot mostly underperformed in relation to
its success on the original maze. In contrast, the tag-trained
robot’s performance proved quite robust to the change in en-
vironment, performing every bit as well in the novel maze.

For the trials in both the original maze and the novel one,
we also collected data on how quickly the robot was able
to navigate the maze. The results (unpictured) show that
the mean duration of a trial stayed more or less constant
throughout most of the demonstration sample sizes. How-
ever, the smallest training sets (.5% and 1%) were slightly
higher, probably owing to a few trials that succeeded in the
end despite very inefficient motions (such as turning 270 de-
grees left rather than 90 degrees right to make a turn). In
addition, the camera-trained trials were slightly though not



significantly faster, (though they were significantly less likely
to make it through the maze at all).

8. CONCLUSION
A robot’s ability to act appropriately depends critically

on its ability to make sense of the situation in which it finds
itself. If humans are to train robots effectively, we must deal
with the mismatch between the human and robot capacity
to interpret tasks and environments. Bringing robots up to
our level is a worthy goal at which researchers are making
steady progress, but we have demonstrated in this paper
that it is also helpful for humans to join robots at their
level. Humans are adaptable and clever; they can deal with
it. And our robots will learn better for the effort.
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