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• This paper develops an overall framework for robot skill learning through human demonstration.
• A Portable Assembly Demonstration (PAD) system is developed as the learning platform.
• Both human motion and object information are considered for action recognition.
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• The overall framework is evaluated on a Baxter robot.
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a b s t r a c t

Acquiring robot assembly skills through human demonstration is an important research problem and can
be used to quickly program robots in future manufacturing industries. To teach robots complex assembly
skills, the robots should be able to recognize the objects (parts and tools) involved, the actions applied,
and the effect of the actions on the parts. It is non-trivial to recognize the subtle assembly actions. To
estimate the effect of the actions on the assembly part is also challenging due to the small part sizes.
In this paper, using a RGB-D camera, we build a Portable Assembly Demonstration (PAD) system which
can automatically recognize the objects (parts/tools) involved, the actions conducted and the assembly
states characterizing the spatial relationship among theparts. The experiment results proved that this PAD
system can generate a high level assembly script with decent accuracy in object and action recognition
as well as assembly state estimation. The assembly script is successfully implemented on a Baxter
robot.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

With the emergence of advanced robots, the demand for teach-
ing robot complex skills increases [1,2]. If a robot can replace or as-
sist a human worker doing complex assembly tasks, the labor cost
can be greatly saved. Compared to the heavy-duty industrial robot
manipulators employed in automotive industry, light weight arm
(LWA) robots and dual-arm robots have emerged recently for small
batchmanufacturing. For example, Foxconn Technology Group has
already deployed their own assembly robot called ‘‘Foxbot’’ in their
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factories [3]. Dual-arm robots have been developed by several
companies that mainly target small part assembly. These robots
include Rethink Robotics’ Baxter robot [4] and Kawada’s Nextage
robot [5], among others.

Currently these robots can only handle simple tasks. Most com-
plicated assembly processes still require human labors. If delicate
assembly skills are taught through human demonstration, lengthy
robot programming can be avoided, meanwhile no robotic exper-
tise is required for the operation. However, a complex assembly
task usually involves many parts and tools while being conducted
in many steps, which leads to several challenges.

First, it is still a difficult task to recognize small parts and tools
using computer vision based methods [6]. Second, it is not reliable
to recognize fine assembly actions purely based on human motion
features [7]. Third, obtaining the relative position and orientation
between parts using 2D vision is challenging, since occlusion fre-
quently occurs between assembled parts [8]. Finally, traditional
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approaches usemultiple sophisticated sensors to capture the infor-
mation of both the objects (parts and tools) and humanmovement,
which are costly and not easy to use.

Existing human skill demonstration systems emphasize ex-
tracting either human motion information or object information
from the demonstration. In [9], object information is extracted
from the demonstration to create chains of two-object relation-
ships. In [10], the demonstration is segmented into a sequence
of primitives that describe the user actions. In [11], humans are
tracked by several calibrated stereo cameras for human motion
imitation. However, both the objects and human motion during
the demonstration are important clues for assembly task learning.
Dillmann [12] built a human skill demonstration platform using
multiple cameras for object recognition and data gloves to capture
human motion. Multiple delicate sensors are used for collecting
data from the demonstration. A rule-based system is established
for elementary operators interpretation. In this paper, in contrast
to previous works, we adopt a single RGB-D camera to build a
Portable Assembly Demonstration (PAD) system. This PAD system
can generate skill scripts by capturing the tools being used, the
parts beingmanipulated and the information about humanmotion
during human demonstration of a complex assembly task. The
skill scripts are presented in a format that is compatible with an
existing planning language. Based on the skill scripts, the robot
does the planning accordingly, then executes the task. The PAD
system has the following features. First, it is able to recognize
small assembly parts and tools used based on both color and
depth information. Second, with the parts and tools serving as
prior information, the accuracy of assembly action recognition can
be improved. Third, the final state of the assembled parts can be
reliably estimated, which represents the effect of the assembly
action. The state describes the relative pose between the parts in
the final assembly. With this capability, for example, it is possible
to estimate how deep a bolt is hammered into a hole, or by what
angle a screw is rotated, in the demonstration. This is useful in-
formation for the robotic assembly process. Furthermore, the skill
script can represent general assembly knowledge independent of
the robots used in the assembly. The contributions of this paper
are as follows: 1. This paper develops a new action recognition
algorithm that improves the recognition accuracy by fusing both
human motion and object information. 2. This paper develops a
new algorithm to estimate the assembly state based on the 3D part
models created by our customized 3D scanner, which significantly
enhances the robustness to partial occlusions between parts. 3.
For assembly state estimation, this paper proposes a novel point
cloud registration method which does not need initial alignment.
4. The system teaches a robot to learn multi-stage assembly skills
by using a low-cost RGB-D camera.

1.2. Related work

Learning from demonstration has drawn much attention in the
robotics community recently [12]. The approaches used to demon-
strate skills to robots can be divided into two categories: robot-
based demonstration and human-based demonstration. Robot-
based demonstration uses robots as the demonstration platform.
This method mainly includes teleoperation [13] and kinesthetic
teaching [14]. This method is suitable for primitive action learn-
ing [15,16].

Compared to robot-baseddemonstration, human-baseddemon-
stration is more convenient for the human operators since they
can focus on the task itself and do not need to operate the
robot. Two types of sensors are usually used for collecting human
demonstration data: wearable sensors and vision sensors. Wear-
able sensors include inertial measurement units (IMUs) [17] and
data gloves [12,18]. In robot learning, it is also called the ‘‘sensor

on teacher’’ approach. Wearable sensors are usually working with
vision sensors that extract the information of the involved objects.
Lee et al. [19] proposed a skill inference and learning framework for
a Skilligent robot. Data gloves are used during the demonstration.
Based on the framework, the robot learns and infers situation-
adequate and goal-oriented skills to handle uncertainties and
human perturbations. Kunze et al. [20] performed a manipulation
task in an interactive simulation. By performing manipulation
tasks in a virtual environment using a data glove, task-related
information of the demonstrated actions can be collected from the
simulator. By using simulation, they avoid the practical problem of
object and pose estimation. Fang et al. [21] proposed a framework
that combines a flexible constraint-basedmotion control approach
with a learning algorithm using random forest regression. The
task is demonstrated in simulation and implemented on a PR2
robot. On the other hand, vision-based human motion tracking
systems are regarded as a natural way to capture demonstration
since no sensors need to be attached to the demonstrator. Ah-
madzadeh et al. [22] proposed a visuospatial learning approach
which adopts a simple algorithm and minimum prior knowledge
to learn a sequence of operations from a single demonstration.
Later, Ahmadzadeh et al. [23] proposed a complete system which
integrates visuospatial skill learning, imitation learning, and con-
ventional planningmethods. In theirwork, only object information
is adopted to interpret the demonstration. In contrast,we take both
object information andhumanmotion into consideration for action
recognition. The taskwehandle ismore challengingwhich requires
high-accuracy object orientation estimation. Takano et al. [24]
proposed a novel approach to describe motion–object in terms of
natural language. An action language model stochastically com-
bines themotion categories, object categories, andwords in the de-
scriptive sentences manually. Then the order of words are learned
based on the relations between these elements as the sentence
structures. The descriptions are further processed for robot use.
Matuszek et al. [25] proposed a method to interact with a robot
through voice and gestures. This method is suitable for simple
tasks that can be clearly described through verbal communication.
Ramirez-Amaro et al. [26] presented a method to extract semantic
rules of human activities. Low-level information is extracted first,
then high-level knowledge is inferred by reasoning about the
human behavior. The robot is able to understand the semantic
meaning of the human behavior. However, the demonstrator has
to put augmented reality (AR) markers on the head for tracking
purpose.

Song et al. [27] developed a platform for learning by demon-
stration fromnatural languages and aKinect sensor,with the initial
domain of kitchen activities. In theirwork, only a single large object
is involved, which can be recognized easily. Additionally, there are
research works specifically on vision-based assembly skill learn-
ing from human demonstration. Hovland et al. [28] proposed an
approach to representing an assembly skill by a hybrid dynamic
systemwhere a discrete event controller models the skill. The con-
troller is represented as a Hidden Markov Model (HMM) [29]. The
problem with this approach is that as the task becomes complex,
the HMM will demand a tremendous training dataset. Dantam
et al. [30] developed a method to interpret human demonstration
to robots. The demonstration is decomposed into a sequence of
object connection symbols which can be further transformed into
the task language. The assembly task they handled is simple and
only the location of the part is required. Takamatsu et al. [9]
aimed to recognize assembly tasks through human demonstration.
A conventional 6 degree-of-freedom (DOF) object-tracking system
recognizes two rigid polyhedral objects from noisy data. Assembly
tasks are expressed as sequences of two-object relationships. How-
ever, they ignored the problemof occlusion between the parts. Ale-
otti et al. [10] demonstrated the assembly task through simulation,
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Fig. 1. The overall learning framework.

in which a task planner is designed to analyze the demonstration
and segment it into a sequence of primitive actions. However,
they did not address the action recognition and object recognition
problem. Wang et al. [31] present a graph-based representation of
knowledge called assembly graph (AG) to describe the knowledge
on parts assembly. The assembly relations are detected from im-
ages and represented by AG. It is solved by taking the property of
parts as well as the robot into consideration to obtain the precise
pose of each part.

In this paper, the goal is to develop a human skill demonstration
system with minimum hardware. It can recognize the parts, the
tools, the assembly actions and the assembly state in a coherent
way. Such a capability is facilitated by the new Portable Assem-
bly Demonstration (PAD) system and the associated theoretical
framework. The rest of the paper is organized as follows: Section
2 introduces the PAD system setup and formulates the problem to
be solved. Section 3 presents the proposedmethodology. Section 4
describes the experimental procedures and gives the experimental
results. In Section 5, the skill scripts generated are implemented by
a dual-arm robot. In Section 6, conclusions are drawn and future
work is proposed.

2. System overview

2.1. PAD system setup

The overall skill learning framework is shown in Fig. 1. The
framework consists of three phases: demonstration, learning and
execution. In the demonstration phase, the operator first demon-
strates primitive actions through Kinesthetic teaching, then the
assembly tasks. In the learning phase, the robot first learns the
primitive actions through task generalization. Then task demon-
strations are transformed into high-level skill scripts using the PAD
system. The skill scripts are compatible with planning language
PDDL 3.0 [32]. In the execution phase, the robot implements the
task based on the solution of the task planner.

The proposed Portable Assembly Demonstration (PAD) system
is shown in Fig. 2, which is responsible for demonstration capture
and interpretation. It consists of a Kinect sensor on a tripod, a
motor-driven turntable, and a computer for data processing (not
in the picture). The Kinect sensor captures the object information
and the human motion, based on which the actions, parts and
tools are recognized. Pre- and Post-conditions as well as action
effects are identified. Altogether, these information are converted
into a symbolic representation. The PAD system has three modes:
(1) object recognition and modeling mode, (2) action recognition
mode and (3) assembly state estimation mode. The Kinect faces
downward 45 degree at the objects on the turntable while model-
ing and recognizing them. It looks horizontally at the demonstrator
for action recognition. The assembly state which represents the

Fig. 2. The hardware setup of the PAD system.

spatial relationship between assembly parts is estimated based on
3Dmodels. The turntable and the Kinect alsowork together as a 3D
modeling subsystem, or 3D scanner. The RoboEarth package [33] is
used to create the 3D models. Meanwhile, a point cloud segmen-
tation algorithm is developed to extract the object from the scene.
For 3D modeling, we attach the marker template to the turntable
anduse a stepmotor to control its rotation. As the turntable rotates,
the 3D templates of the object will be extracted. After the turntable
rotates a full circle at a proper speed, a 3D model is created.

All the programs run in ROS (Robot Operating System) [34] in
Linux. There are seven ROS nodes in total: a step motor control
node, an objectmodeling node, an object template extraction node,
an object recognition node, a human skeleton tracking node, an
action recognition node and an assembly state estimation node.
The object modeling node and the object template extraction node
start to work when the motor starts to rotate. They stop once
the motor stops. The object recognition node uses the prebuilt
templates to recognize parts and tools. The action recognition node
integrates the outputs of the human skeleton tracking node and
the outputs of the object recognition node. The assembly state
estimation node uses two kinds of 3D models: the individual 3D
models of the involved parts and the 3D model of the assembled
part created after the assembly action.

2.2. Formulation of the problem

Generally, a complex assembly task which involves n parts can
be represented as a sequence of subtasks as shown in Eqs. (1) and
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where ζ is the final product, pn is the nth part, ⊕ is the assembly
action on the two parts. The complex assembly task can be treated
as a sequence of two-part assembly subtasks. As shown in Eq. (1),
in a two-part assembly task, themodels for each part are defined as
M1

1 and M2
1. First, take p1’s model as M1

1, p2’s model as M2
1, The

superscript denotes the index of the subtask. Then, M1
2 and M2

2

will be used to denote p1 ⊕ p2 and p3 respectively. This process
continues until the last part is assembled. On the other hand, the
implementation of a complex task can also follow the sequence
show in Eq. (2) using the same idea.

For the casewhen there aremultiple actions applied to the parts
p1 and p2, we have

M1
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= p1⊕1⊕2 · · · ⊕mp2
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M1

m

⊕m p2
M2

m  
M1

m+1

(3)

M1
m+1 is the model of p1⊕mp2. ⊕m is the mth action on part p1

and p2. It will be used as the M1 for the (m + 1)th subtask. =>
denotes the action sequence flow.

Given the above setup, the problems to be solved are action
and part recognition and assembly state estimation. The input
to the action recognition system consists of two elements: the
observation of the objects and the observation of the human action.
The observation of the objects has two parts, ψp is the decision of
the part recognition which is one of the parts in the assembly sets.
ψt is the decision of the tool recognition system which is one of
the tools in the tool set. If the action does not involve any tool
then ψt = null. The observation of the action ψa is a sequence
of skeleton data of the human subject {Γ1,Γ2 . . .Γt}, where Γt =

{Θ1,Θ2 . . .Θk}, Θi is the angle of joint i and k is the total number
of joints. We assume the part set P = {P1, P2 . . . Pm}, the tool set
T = {T1, T2 . . . Tn}, and the action set A = {A1, A2 . . . Aq}. The
action recognition is to develop an algorithm to decide on Ai ∈ A
given the above observation. In other words, the goal of the action
recognition is to find a mapping function fa,

Ai = fa(ψa, ψp, ψt ) (4)

The assembly state describes the spatial relationship between
individual parts in the final assembly. To estimate the assembly
state, the input includes the 3Dmodels of each individual part and
the 3D model of the assembled part after each action. The goal of
assembly state estimation is to find a mapping function fs,

S = fs(M1,M2,M1 ⊕ M2) (5)

Here, S is the assembly state.M1 andM2 are the models of the two
parts involved. M1 ⊕ M2 is the 3D model of the assembled part

which is a joint of partM1 andM2. To estimate the assembly state,
M2 is treated as the reference part. Then the state S is the pose of
the non-reference part with respect to the reference part. Based
on the solutions to the two problems mentioned, we can generate
a skill scriptΣ as follows

Σ = (Σ1,Σ2,Σ3 . . .Σn) (6)

where each assembly skill Σi is a 5-tuple symbolic description
defined as

Σi = ⟨Ai, Ti, P1i, P2i, Si⟩ (7)

where P1i and P2i are the two parts involved in the ith step.

3. Methodology

The robot learns the primitive actions through Kinesthetic
teaching. The learned actions are kept in the knowledge base.
On the other hand, after the assembly task demonstration, the
sequence of actions, involved parts and tools, as well as assembly
state are learned. The skill scripts are then generatedwhich are de-
scribed in a PDDL compatible way. The following sections explain
each component of the system.

3.1. Primitive action learning

The primitive actions are learned through Kinesthetic teaching.
Fig. 3 shows the teaching of hammering action. The trajectory
of the robot’s left gripper with respect to the reference part is
recorded. The reference part is tracked using an Kinect sensor [35].
Therefore, the relationship between the Kinect frame and the robot
frame has to be calibrated. The trajectories extracted frommultiple
demonstrations are generalized. The generalized trajectory will be
reproduced according to the pose of the reference part. For each
action, the robot arm is guided to the desired pose multiple times
from different initial poses. To extract the task and joint space
constraints from multiple demonstrations, the Gaussian Mixture
Model (GMM) and Gaussian Mixture Regression (GMR) meth-
ods [14] are adopted. The data is first normalized before applying
GMM/GMR. The normalization ensures that each demonstration
has the same data length. The normalized dataset is first modeled
by a GaussianMixtureModel (GMM)which has three components.
These parameters are experimentally decided using a trial-and-
error method. Based on the GMM, a generalized version of the
trajectories is computed by applying Gaussian Mixture Regression
(GMR). When a new pose of the part is obtained by the Kinect
sensor, it has to be transformed into the pose with respect to
the robot base frame. Then the reproduced pose trajectory can be
derived. Ultimately it is converted from the task space to the joint
space using the given Inverse Kinematic function.

3.2. Object recognition

To recognize the objects, the tools and parts are put on the
turntable one by one before demonstration for recognition. There-
fore, the system knows what parts and tools (if any) will be in-
volved before the demonstration. The 3D templates for each object
are created beforehand. For each object, we capture multiple tem-
plates (2 for symmetrical objects and 4 for asymmetrical objects)
from different camera views. To extract the point cloud of the
object on the turntable, the distant points will be filtered out first.
Then the top surface of the turntable will be extracted and all the
points above that surface are considered as the points on the object.

Object recognition in the PAD system is based on the recog-
nition module in Point Cloud Library (PCL) [36]. The recognition
process is as follows. First, from the point cloud of the whole
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Fig. 3. Kinesthetic teaching of the hammering action.

Fig. 4. The action recognition framework.

scene, only points above the turntable are extracted, which greatly
decreases the number of points to be processed. This process can
also help improve the recognition accuracy since the outliers can
be removed effectively. Second, the normals of each point in both
the model point cloud and the scene point cloud are computed
using the 10 nearest neighbors. Third, each point cloud is down-
sampled uniformly to find a small number of keypoints, which
are associated with a 3D descriptor in order to perform keypoint
matching and determine point-to-point correspondences. Accord-
ing to [37], the SHOTCOLOR [38] descriptor shows competitive
performance among the 3D descriptors which is a color version
of SHOT (Unique Signatures of Histograms) [39]. Therefore, we
choose the SHOTCOLOR descriptor. The measure for correspon-
dence matching is squared descriptor distance. The density of the
keypoints is adjusted according to the size of the object. To extract
enough features, higher sampling densities are required for small
objects. Fourth, once correspondences between the model and the
scene are obtained, each correspondence can cast a vote for the po-
sition of the reference point in the scene. Evidence for the presence
of a particular object can then be evaluated by thresholding the
peaks of the Hough space. Seamlessly, multiple peaks in the Hough
space indicate the presence ofmultiple instances of the object [40].

3.3. Action recognition

We aim to develop an accurate action recognition algorithm by
considering the object/action correlation. A two-level probabilistic
approach is proposed. At the low level, HMMsmodel the dynamics
of the actions. At the high level, a Bayesian model captures action–
object dependencies. The action recognition framework is shown
in Fig. 4.

Fig. 5. Data segmentation in recognition phase.

3.3.1. HMMs for low-level action recognition
We propose an HMM based approach to performing real-time

action spotting and classification from continuous user motion.
Each action is characterized by anHMM. Eachmodel is trainedwith
20 sets of training data at a sampling rate of 20 Hz. The training
data is a sequence of right arm joint angles which can be accessed
through the Openni [41] driver and the skeleton tracker function
as shown in Fig. 6. Four joint angles from two right arm joints are
considered: the roll and yaw angles of the right elbow, the roll
and pitch angles of the right shoulder. The number of state in each
HMM is 10. The number of observation symbol is 8. These values
are determined through experiments.

In the training phase, there are four steps:

• Step 1: Segment the training set.
• Step 2: Quantify the vectors into observation symbols using

the K-means clustering.
• Step 3: Set up the initial HMM parameters.
• Step 4: Parameter estimation using the EM method [42].

In the recognition phase, as shown in Fig. 5, the testing data is
segmented using a fixed slidingwindowof size 15. The step size for
the sliding window is 1. The probability of having the observation
sequence given the model P(ψa|λj) is computed for each sliding
window. ψa is a sequence of feature vector. λj is the HMM model
for action Aj. Solving this problem allows us to choose the model
which bestmatches the observations. More details of the low-level
HMM can be found in [43].

3.3.2. Bayesian network for modeling object–action dependencies
The objects include tools and parts. They both have correlation

with the action. The correlation is modeled in a Bayesian model
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Fig. 6. Human skeleton tracking by the RGB-D sensor.

Fig. 7. The Bayesian model for action recognition.

shown in Fig. 7. The manipulative action is denoted by Aj.ψp is the
decision of part recognition. ψt is the decision of tool recognition
where ψp ∈ Ψp, ψt ∈ Ψt and ψa ∈ Ψa. At this level, the goal is to
find the maximum posterior likelihood (MAP) estimation,

Aj
∗

= arg max
Aj

P(Aj|ψa, ψp, ψt ) (8)

According to the Bayesian rule,

P(Aj|ψa, ψp, ψt ) ∝ P(ψa|Aj, ψp, ψt ) · P(Aj|ψp, ψt ) (9)

As shown in the Bayesian model, we made the assump-
tion that ψa is independent of ψp and ψt given Aj. Therefore,
P(ψa|Aj, ψp, ψt ) = P(ψa|Aj). P(ψa|Aj) is interpreted as P(ψa|λj)
which is the recognition output of the low-level HMMs. Applying
the total probability theorem, we have

P(Aj|ψp, ψt ) =∑
m

∑
n

P(Aj|Pm, Tn, ψp, ψt ) · P(Pm, Tn|ψp, ψt ) (10)

where Pm is partm and Tn is tool n. Aj is independent ofψp,ψt given
Pm, Tn. Therefore,

P(Aj|Pm, Tn, ψp, ψt ) = P(Aj|Pm, Tn) (11)

P(Aj|Pm, Tn) is the prior probability characterizing the action
that occurs on part Pm using tool Tn, which can be calculated based
on the occurrence of Aj given Pm and Tn in the training set. On the
other hand, we have

P(Pm, Tn|ψp, ψt ) = P(Pm|ψp) · P(Tn|ψt ) (12)

P(Pm|ψp) is the part classification accuracy and P(Tn|ψt ) is the tool
classification accuracy.

Fig. 8. The coordinate system defined by the 6 markers [44].

Fig. 9. State estimation for a two-step assembly task.M1 andM2 are the 3Dmodels
of the base board and the bolt respectively. CM1 is the 3D model of the assembled
part after the first action. CM2 is the 3Dmodel of the assembled part after the second
action.

If two parts are involved in the task, the Eq. (12) can be derived
as follows:
P(Pm1, Pm2|ψp1, ψp2) =

P(Pm1|ψp1) · P(Pm2|ψp2)
(13)

P(Pm1|ψp1) and P(Pm2|ψp2) are the part P1 and P2 classification
accuracy respectively.

3.4. Assembly state estimation

To estimate the assembly state, we first define a common coor-
dinate system based on 6 markers, as shown in Fig. 8. One of the
two parts is treated as the reference part. Therefore, the assembly
state is the pose of the non-reference part with respect to the
reference part.

Fig. 9 shows a two-step assembly task that inserts and hammers
a square bolt into a hole through the baseboard. With the 3D
scanner, first we create the 3D models of these two parts. Since
they are in the same coordinate frame, the initial state S0 can
be represented by a 4 × 4 identity matrix. The 3D model of the
assembled part is created after an action is applied to these two
parts. The 3D model of each part is registered to the 3D model of
the assembled part.
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We adopt a two-step point cloud registration approach. In the
first step, Fast Point Feature Histograms (FPFH) [45] are extracted
from both object and scene models. It is an informative pose-
invariant local feature which represents the underlying surface
model properties at a point. Based on the correspondences be-
tween features, Sample Consensus Initial Alignment (SAC-IA) [46]
is used to find the initial alignment. In the second step, the ICP
(Iterative Closest Point) [47] algorithm is adopted to calculate
the transformation based on the initial alignment. With this ap-
proach, the position and orientation of the individual models can
be arbitrary with respect to the model of the assembled part. The
transformation matrix obtained by our approach is shown in Eq.
(14).

T =

⎛⎜⎝R11 R12 R13 Dx
R21 R22 R23 Dy
R31 R32 R33 Dz
0 0 0 1

⎞⎟⎠ (14)

The translation along each axis is given by Dx,Dy,Dz . To calculate
the Euler angles about each axis, let ψ, θ, φ be the Euler angles
about the X, Y, Z axis, respectively, then we have the following
equations [48].⎧⎨⎩ψ = atan2(R32/R33)
θ = −sin−1R31
φ = atan2(R21/R11)

(15)

Here we define two transformation matrices. Tri represents the
pose change of the reference part after action i; while Tpi repre-
sents the pose change of the non-reference part after action i. The
assembly state Si after action i can be calculated as

Si = (Tri)−1
· Si−1 · Tpi (16)

Here, Si−1 is the precondition, Si is the postcondition.

3.5. Skill scripts implementation

The skill script is a 5-tuple symbolic description, Σ =

⟨A, T , P1, P2, S⟩, where A is the primitive action to be implemented
by the robot, T is the tool used, P1, P2 are the two parts involved. At
the beginning of the demonstration, the parts and tools are placed
onto the turntable for recognition. The recognized action tells the
robotwhich primitive action should be applied. Before the action is
applied, it checks if the precondition is met based on the assembly
state. Once met, the robot reproduces the action according to
the observation. The action is repeated until the postcondition
is satisfied. Meanwhile, in order to use the primitive actions for
general purpose task planning, the actions have to be represented
in a symbolic, scenario-independent way. The preconditions and
effects for each action in the knowledge base are derived from
the assembly state. Fig. 10 shows a snippet of the planning for-
malization. : objects is used to specify all the objects in the PDDL
problem [32]. They are listed according to the type. : init and : goal
specify the initial and final state described using positive ground
literals. The goal condition is formalized as a logical conjunction.

4. Experiment and results

Experiments are conducted to verify the proposed method. An
assembly scenario is used to validate our theoretical framework.
Fig. 11 shows the parts and tools used in our experiment.

Fig. 10. The snippet of the planning formalization.

Fig. 11. The parts and tools. From left to right, the top row: saw, G clamp, drill, and
wood planner. The bottom row: hammer, screw driver, wrench, bolt, screw, nut and
red board.

4.1. Object recognition

4.1.1. Template extraction
The point cloud of the parts on top of the turntable is extracted.

They are used for part recognition. The point cloud of the base
board is shown in Fig. 12. It shows that our approach can effec-
tively extract the points that belong to the part from the scene
point cloud. It is worth mentioning that the plane function of the
turntable corresponds to the camera pose. If the camera pose is
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Fig. 12. Extraction of the based board’s points from the scene point cloud. (a) and
(b) show the scene point cloud with two different rotation angles of the turntable.
(c) and (d) show the extracted points of the base board.

Fig. 13. Results of tool and part recognition, where the recognized objects are
highlighted in red. (a) the screw driver. (b) the hammer. (c) the base board. (d) the
screw. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

changed, the plane function should be recalculated. To reliably rec-
ognize objects, two templates are needed for symmetrical objects
and four for asymmetrical objects.

4.1.2. Object recognition
The top row in Fig. 13 shows the recognition results of the screw

driver and the hammer respectively. The bottom row shows the
recognition of the base board and the screw. The recognized objects
are highlighted in red. In order to recognize small objects like the
screw, the downsampling radius for the scene has to be small so
that enough keypoints can be extracted. In addition, we evaluate
the robustness of our approach under occlusion and in cluttered
scenes. Figs. 14(a) and (b) show that with minor occlusions, the
board can still be recognized. Figs. 14(c) and (d) show that our
algorithm works correctly in cluttered scenes. The two red blocks
in the cluttered scene which are similar to the base board are not
misclassified as the base board. To evaluate the recognition accu-
racy, for each object type, 100 trials are conducted with different
object poses and camera viewpoints. The recognition accuracy is
shown in Table 1.

4.2. Action recognition

For action recognition, segmentation is implemented implicitly
by the HMMs. If the outputs of all the HMMs are very small, it indi-
cates that there is no action or the action has already finished. Two

Fig. 14. Results of board recognition, where the recognized objects are highlighted
in green. (a) the board with occlusion from a bolt. (b) the board with occlusion from
another board. (c) the board in cluttered scene 1. (d) the board in cluttered scene
2. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
The object recognition accuracy.

Object saw G clamp drill wood planner
Accuracy 0.92 0.93 0.95 0.92

Object hammer screw driver wrench bolt
Accuracy 0.97 0.87 0.88 0.85

Object screw nut red board
Accuracy 0.86 0.87 0.89

kinds of manipulative actions are tested. For the actions that in-
volve tools, both tool/action and part/action dependencies are con-
sidered. The priority of the tool/action dependencies is higher than
that of the part/action dependencies, since the tool used usually
offers more clue about the action than the part does. While for the
actions that do not involve tools, only part/action dependencies are
considered. As the human hand (with or without tool in the hand)
approaches the part, the Bayesian network takes effect. To evaluate
the action recognition system, the training dataset is collected from
one subjectwhile theHMMs and Bayesianmodel are tested on four
other subjects. The trainer conducts a sequence of assembly tasks.
Two kinds of training data are collected: the training data for each
HMM and the object/action sequence which is used to calculate
the object/actiondependencies used in theBayesiannetwork. After
that, four other subjects conduct a sequence of assembly tasks to
verify the trained models. Each assembly action is conducted 50
times by each subject for each cross validation. The accuracy of
the HMMs and the Bayesian model are shown in Tables 2 and 3
respectively. The accuracy of the Bayesianmodel is shown in Table
3; Compared with HMMs, the Bayesian model can differentiate
actions more effectively.

4.3. Assembly state estimation

In this section, the point cloud registration method used is
evaluated first. Then the assembly state estimation results are
given.

4.3.1. Evaluation of point cloud registration
The computation cost of the point cloud registration is propor-

tional to the size of the point cloud. However, reducing the size of
point cloudmay impact the accuracy of registration. Therefore, we
design an experiment to evaluate how the size of the point cloud
affects the accuracy of a pure rotation assembly. The accuracy of
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Table 2
Recognition accuracy of the HMMs.

test type decision type accuracy
hammering screwing wrenching sawing drilling rasping fixing inserting aligning missed

hammering 0.90 – – 0.02 – 0.04 – – – 0.04 0.90
screwing – 0.75 – – – – 0.22 – – 0.03 0.75
wrenching – – 0.93 0.02 0.01 – 0.02 – – 0.02 0.93
sawing – – – 0.66 – 0.32 – – – 0.02 0.66
drilling 0.02 – 0.02 – 0.89 – – – – 0.07 0.89
rasping – – – 0.34 – 0.62 – – – 0.04 0.62
fixing – 0.25 – – – – 0.72 – – 0.03 0.72
inserting – – – – – 0.02 – 0.86 0.10 0.02 0.86
aligning – – – – – 0.01 – 0.06 0.87 0.06 0.87

Table 3
Recognition accuracy of the Bayesian model.

test type decision type accuracy
hammering screwing wrenching sawing drilling rasping fixing inserting aligning missed

hammering 0.94 – – 0.02 – 0.02 – – – 0.02 0.94
screwing – 0.95 – – – – 0.02 – – 0.03 0.95
wrenching – – 0.98 – – – – – – 0.02 0.98
sawing – – – 0.96 – 0.02 – – – 0.02 0.96
drilling – – – – 0.95 – – – – 0.05 0.95
rasping – – – 0.04 – 0.92 – – – 0.04 0.94
fixing – 0.02 – – – – 0.92 – – 0.06 0.92
inserting – – – – – – – 0.91 0.07 0.02 0.91
aligning – – – – – – – 0.05 0.90 0.05 0.90

Table 4
The procedure of part assembly.

Step p1 (Reference) p2 Action⊕ p1⊕p2

1 red board bolt inserting CP1
2 red board bolt hammering CP2
3 red board bolt wrenching CP3
4 CP3 nut aligning CP4
5 CP4 screw inserting CP5
6 CP4 screw screwing CP6

the calculated angleφ is evaluated against the portion of the points
kept. Fig. 15 indicates that as long as more than half of the points
are kept, the accuracy will be consistently high.

Another experiment is implemented to test the robustness of
our registration approach. The model of a bolt is registered to its
flipped model. Figs. 16(a) and (b) are the input point cloud and the
target point cloud respectively. Fig. 16(c) is the registration result
of the ICP algorithm without initial alignment. The registration
failed since without initial alignment, the ICP algorithm falls into a
local minimum. Fig. 16(d) is the result of the Sample Consensus
Initial Alignment algorithm. It roughly aligns the input cloud to
the target cloud. However somemisalignment still exists, since the
correspondences found are not always correct. The last figure is
the result of the proposed approach. The ICP is applied after initial
alignment which can overcome the limitation of each individual
algorithm and the registration results are better.

4.3.2. Assembly state estimation
An assembly scenario is designed to evaluate the assembly

state estimation. The experimental procedure is shown in Table 4,
while Fig. 17 shows the six steps of the parts assembly and Fig.
18 shows the parts and the corresponding models after each step.
CP means the combined part after an primitive action. First, the
bolt is inserted into one hole of the base board. Second, the bolt is
hammered into the hole. Third, the bolt is wrenched by 30◦ with
respect to the base board. Fourth, a nut is aligned to the other hole.
Fifth, a screw is inserted into this hole. Finally, a screwdriver is used
to screw the base board and the nut.

Fig. 15. Accuracy of the rotation estimation with respect to the portion of point
cloud kept. Different colors denote registration from the models with different
initial angles. The angular difference between the inputmodel and the targetmodel
of each registration is 30 degree. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The initial state S0 is

S0 = {Dx,Dy,Dz, ψ, θ, φ}

= {0.0 mm, 0.0 mm, 0.0 mm, 0.00◦, 0.00◦, 0.00◦
}

(17)

Fig. 19-(a) gives the results of registering M1
1 and M2

1 to
CM1 after the ‘‘inserting’’ action. The ground truth of state
S1 which represents the pose of M2 with respect to M1 is
{43.0 mm, 0.0 mm, 0.0 mm, 0.00◦, 0.00◦, 0.00◦

}, the estimation
is:

Ŝ1 = {43.2 mm, 1.7 mm,−2.8 mm, 0.50◦, 0.12◦, 1.01◦
} (18)
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Fig. 16. Registration results. (a) the input 3Dmodel. (b) the target model. (c) registration result of ICP. (d) registration result of SAC-IA. (e) registration result of our approach.
((c) - (e): Red ones indicate the registration results. Yellow ones indicate the target model). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 17. The actions used in the experiment. (a) inserting the bolt. (b) hammering the bolt. (c) wrenching the bolt. (d) aligning the nut to the hole on the base board. (e)
inserting the screw. (f) screwing the screw.
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Fig. 18. The parts and the associated model. (A) red board. (B) bolt (C) nut (D) parts pose (CP1) after action 1. (E) parts pose (CP2) after action 2. (F) parts pose (CP3) after
action 3. (G) parts pose (CP4) after action 4. (H) parts pose (CP5) after action 5. (I) parts pose (CP6) after action 6. (a) - (i) are the models of (A)-(I).

Fig. 19. Registration results. (a) register M1
1 and M2

1 to CM1 after action 1
‘‘inserting’’. (b) registerM1

2 and M2
2 to CM2 after action 2 ‘‘hammering’’.

Table 5
The registration performance.

Step 1 2 3

RMS error (mm) 1.280 1.662 1.862
Step 4 5 6
RMS error (mm) 1.7014 1.9014 2.4624

Fig. 19-(b) shows the registration of M1
2 and M2

2 to CM2. The
major movement of M1

2 is translation along the vertical axis (Z
axis). The ground truth of S2 is {43.0 mm, 0.0 mm,−34.0 mm,
0.00◦, 0.00◦, 0.00◦

}. The estimated S2 is

Ŝ2 = {44.1 mm, 3.5 mm,−35.9 mm, 0.95◦,−0.74◦, 1.41◦
} (19)

Afterwrenching, the bolt is rotated anticlockwise by 30◦ around
the base board. The ground truth of S3 is {43.0 mm, 0.0 mm,

−34.0 mm, 0.00◦, 0.00◦, 30.00◦
}. The estimated S3 is

Ŝ3 = {43.5 mm,−4.1 mm,−33.2 mm, 2.21◦, 1.36◦, 31.47◦
} (20)

Asmentionedbefore, the estimated angle is not unique andonly
the one that reflects the actual rotation is selected. Similarly, this
process goes on until the final part is assembled. The estimated
assembly state Ŝ4, Ŝ5, Ŝ6 are as follows,

Ŝ4 = {−42.7 mm, 2.2 mm,−2.8 mm, 3.65◦, 2.74◦, 4.21◦
} (21)

Ŝ5 = {−46.2 mm,−1.0 mm, 0.9 mm, 4.39◦, 4.26◦, 5.12◦
} (22)

Ŝ6 = {−45.2 mm, 5.2 mm,−51.2 mm, 3.88◦, 3.54◦, 7.26◦
} (23)

The registration result of the last step is shown in Fig. 20. As the
assembled part becomes more complicated, the registration result
gets less accurate. This is because the chance of occlusion increases.
The registration performance of each step is given in Table 5 in
terms of root mean square (RMS in mm). It is worth noting that
for some symmetrical parts, the rotation angle cannot be uniquely
determined, and other sources of information may be required.

The assembly process is repeated 10 times. The average error
for translation and rotation is within 10 mm and 10◦ respectively.
The assembly state is used for precondition and action effects
definition. Finally, after the human demonstration, the following
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Fig. 20. Registration results. RegisterM1
5 andM2

5 to CM6 after action 6 ‘‘screwing’’.

Fig. 21. The robot implementation setup.

scripts are generated automatically:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Σ1 = ⟨inserting,N/A, bolt, baseboard, Ŝ1⟩
Σ2 = ⟨hammering, hammer, bolt, baseboard, Ŝ2⟩
Σ3 = ⟨wrenching, wrench, bolt, baseboard, Ŝ3⟩
Σ4 = ⟨aligning,N/A, nut, CP3, Ŝ4⟩
Σ5 = ⟨inserting,N/A, screw, CP4, Ŝ5⟩
Σ6 = ⟨screwing, screwdriver, screw, CP4, Ŝ6⟩

(24)

where N/A stands for ‘‘Not Applicable’’. In summary, with the ac-
tion recognition and assembly state estimationmethods developed
in the paper, we can automatically obtain the assembly script from
human demonstration. Overall, the average error for translation
and rotation is within 10 mm and 10◦ respectively.

5. Robot implementation

We implement the acquired skill scripts on the Baxter robot as
shown in Fig. 21. The Baxter is a dual-arm robot which is capable
of performing a variety of production tasks, while safely and intel-
ligently working next to people. Its 360◦ sonar and front camera
can be used for human presence detection, vision-guided move-
ment, and object detection. Each arm has 7 degrees of freedom
for maximum flexibility and range [49]. We first teach the Baxter
the primitive actions through Kinesthetic teaching. During the
demonstration, the assembly parts are tracked by the AR markers

using an Kinect sensor. Due to the limited capabilities of the Baxter
robot, the following assumptions are made:

• The robot always grasps the part from an overhead position.
• Once a part is grasped, there is no relative motion between

the part and the gripper.
• The tool is fixed on the gripper manually.

There are four actions in total: inserting, hammering, wrench-
ing and screwdriving. For each action, the robot arm is guided
to the desired pose multiple times from different initial poses.
Let

{
εj

}M
j=1 denote the M demonstrations. Each demonstration is

normalized to 40 time steps using interpolation. Each data point in
εj, {ti, γi}, consists of a time step ti and a pose γi which is the pose
of the left gripper with respect to the part, lgPpt . Figs. 22 and 23
show the results of applying GMM/GMR to multiple ‘‘hammering’’
demonstrations which characterize the left gripper’s pose with re-
spect to the bolt. The results indicate that the positional constraints
of the hammering action are tight at the end, since the hammer
always needs to strike the small top surface of the bolt. On the other
hand, the rotational constraints are loose, which also makes sense
since the hammer can approach the bolt from multiple directions.
This method is applied to all the other basic actions.

When a new pose of the part is obtained by the Kinect sensor,
it can be transformed into the pose with respect to the Baxter base
frame ptPbase. Then the reproduced pose can be derived as follows:

lgPbase =
lgPpt ·ptPbase (25)

Ultimately, lgPbase must be converted from the task space to the
joint space using the given Inverse Kinematic function.

The robot then implements the demonstrated tasks after the
human demonstration. The task has five steps.

• Step 1: Inserting a bolt into a baseboard.
• Step 2: Hammering the bolt down.
• Step 3: Inserting a screw into the baseboard.
• Step 4: Screwdriving the screw down.
• Step 5: wrenching the bolt.

The generated scripts for each step are interpreted as men-
tioned in Section 3-E. Tracking the parts in real-time is very chal-
lenging because of the limited size and occlusion between the
assembly parts. Therefore, AR markers are used. By making the
marker reasonably small (2 cm by 2 cm), we can reduce the chance
of occlusion. The assembly state S describes the relative pose of the
two assembly parts. The coordinate of the 3Dmodel of each part is
defined by the marker frame on the turntable as shown in Fig. 8.
On the other hand, the robot uses an AR marker to track each part.
Therefore, for each part, the transformation between the 3Dmodel
frame and the ARmarker frame has to be calculated. After that, the
assembly state is transformed into the ARmarker frame. S ′ and S ′

i−1
are calculated as follows.

S ′

i = (Tri ∗ Tr2a)−1
· S ′

i−1 · Tpi ∗ Tp2a (26)

S ′

i is the transformed assembly state after action Ai. Tr2a is the
transformation from the reference part 3D model frame to its AR
marker frame. Tp2a is the transformation from the non-reference
part 3Dmodel frame to its AR marker frame. The robot repeats the
assembly action Ai until S ′

i is reached.
Fig. 24 shows the robot inserting the bolt into the base board.

Fig. 25 shows the robot hammering the bolt down to the base
board. It hammers the bolt multiple times (three times in this
example) until it reaches the desired pose. Fig. 26 shows the screw
being inserted into the slot. Fig. 27 shows the robot screwdriving
the screw down to a hole in the base board. This action is repeated
8 times until the assembly state is reached. To track the screw, two
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Fig. 22. Trajectory encoding and generalization 1. The figures on the left column represent the trajectories of x,y, and z positions of each demonstration (hammering).
The figures in the middle column show the GMMs to model the trajectories. The figures on the right column show the generalized trajectories of each dimension and the
corresponding variances.

Fig. 23. Trajectory encoding and generalization 2. The figures on the left column represent the roll, pitch, and yaw rotations of each demonstration (hammering). The figures
in the middle column show the GMMs to model the trajectories. The figures on the right column show the generalized trajectories of each dimension and the corresponding
variances.
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Fig. 24. The robot implements script 1 (inserting bolt).Σ1 = ⟨inserting,N/A, bolt, baseboard, S ′

1⟩.

Fig. 25. The robot implements script 2 (hammering bolt).Σ2 = ⟨hammering, hammer, bolt, baseboard, S ′

2⟩.

Fig. 26. The robot implements script 3 (inserting screw).Σ3 = ⟨inserting,N/A, screw, baseboard, S ′

3⟩.

Fig. 27. The robot implements script 4 (screwdriving).Σ4 = ⟨screwdriving, screwdriver, screw, baseboard, S ′

4⟩.
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Table 6
The success rate of script implementation.

Script 1 2 3 4

Success rate 0.70 0.90 0.80 0.60
Script 5
Success rate 0.75

identical markers are attached on the two opposite sides of the
screw. The reason is twofold. First, the screw rotates 180 degrees
after one screwdriving action, so onemarker is not enough to track
it. Secondly, due to the symmetric geometry of the screw, the use of
two identical markers enables the robot to apply the same learned
constraint in either configuration.

The success rate of implementing each script is also evaluated
and is shown in Table 6. Each script is implemented 20 times. The
script describing the action ‘‘hammering’’ is the simplest for the
robot, since the hammer only needs to hit the top of the bolt. On
the other hand, the most challenging task for the robot is script 4
which involves ‘‘screwdriving’’, since the slot on the screw is very
small. Due to the errors of the robot and the AR marker tracking
algorithm, the robot sometimes fails to insert the screwdriver into
the slot. To judge if a robot implementation is a success or a failure,
a criterion is defined. As long as the relative orientation between
the two parts is close enough to the desired one, it is considered as
a successful implementation. On the other hand, the following will
be considered as failures: 1. Massive contact force, which is judged
by the torque measurement of each joint. If too much torque is
put on any one of the joint, the robot stops immediately by itself
and the implementation is considered as failed. 2. The robot fails
to reach the goal within a given amount of time.

6. Conclusion

In this paper, we propose a Portable Assembly Demonstration
(PAD) system for robots to learn complex assembly skills from
humans. Based on a RGB-D camera, tools and parts used in the
assembly are recognized, which allows to effectively recognize
complex assembly actions. To estimate the assembly state, 3D
models of the individual parts and the assembled parts are created
using the PAD system. A two-step registration approach is adopted
to estimate the assembly state. This registration method is robust
to minor occlusions and works well for small parts. Experiments
have verified and evaluated the proposed PAD system and the
associated theoretical framework. Our PAD system can be used
for robots to acquire assembly skills, which can help automate
the future factories. Currently the limited accuracy of the created
3D models restricts the current PAD system to only simple parts.
Compared to [12,23], the proposed system is more tightly inte-
grated. Since the action recognition considers both human motion
and object information, it performsmore robustly. Considering the
limitations of the current PAD system, our future work will focus
on improving the system on the following aspects: (1) The current
human demonstration and robot implementation do not involve
force. We will investigate using force sensors to better capture
human assembly and realizing force control during implementa-
tion. (2) The current part tracking is based on AR markers. We
will develop more robust, highly accurate part tracking method
without using AR markers. (3) The current system cannot handle
significant occlusions during part recognition and tracking.Wewill
improve the recognition and trackingmethod to address this issue.
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