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ABSTRACT
We demonstrate a robotic system that learns to recognize
the behavioral indicators that a complex, rapidly-evolving
task has exceeded the cognitive capacity of a human partner.
Based on that determination, it can act autonomously to
reduce the human decision burden, significantly improving
task performance.

1. INTRODUCTION
One of the most challenging obstacles facing human-robot

teams is the inherent communication barrier between the
two. Human operators, at least once they have received
training, have some notion concerning the capacities of their
mechanized partners, but the ability of robots to assess the
limitations of humans has not received adequate attention.

In our system, the robot learns to model the relationship
between human direction and task performance for a well-
understood task–in this case, navigating a maze. The robot
then participates in a different, more difficult problem, but
it can still use its learned model to evaluate a human oper-
ator’s cognitive load. A robot’s ability to participate con-
structively in a human-robot team will benefit immensely
from understanding and accommodating this cognitive stress
appropriately [1]. Our work demonstrates robots that can
detect the emergence of cognitive stress in their operators,
increasing their level of autonomy and reducing demands on
the operator’s attention.

Human-robot interactions can be evaluated using funda-
mental metrics [5]. We leverage this data to inform our
robots’ estimation of a human operator’s cognitive capac-
ity. Recent work [3, 4] presented a model for assessing a
human’s attention level, based on eye contact and gaze de-
tection towards a robot. In our work, the robot learns a
general behavior model to identify the operator’s cognitive
threshold, rather than relying on the specifics of gaze.

2. PROBLEM STATEMENT
Take H = [h1, h2, · · · , hm] to be a vector of ecologically
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valid measurements of human behavior relevant to the prob-
lem space. Assume a task for which a robot participant can
independently calculate s, a function of a vector of mea-
surable environmental features E = [e1, e2, · · · , en]. Thus,
s = f(E), where f is a task-specific function known to the
robot. Using f and calculating s, a robot can build its own
supervised training set for a learning task, where the human
input H is associated with s through a learned function
g. Thus, the robot learns to associate the human behav-
ioral metrics H with task success s within a known task,
so the output of g is a learned estimate of the true success
(ŝ = g(H)). Now, assign the robot a task which requires
human input for success, i.e., the robot has no access to
an analogue to f or s in this new task. However, it can
still measure the components of H, and it has access to its
learned model g. We show that computing ŝ = g(H) in this
new environment allows the robot to estimate not the task
success, but the cognitive load on its human partner and an
estimate of the quality of the human’s direction.

3. EXPERIMENTAL DESIGN
Our experiments consisted of two games, maze navigation

[2] and coin collection. All the games were played in two
configurations, using either one or two robots, and with an
interaction duration of two minutes. In the maze game, the
robot collects data needed to build a model g for evaluating
human cognitive load based on input H. In the subsequent
coin game, the robot is placed in a different scenario where
it has no access to success measures or even rules. Even
so, with no independent means of measuring task success, it
can still calculate ŝ = g(H), and can therefore evaluate the
quality of instruction, and hence the cognitive capacity, of
its human partner.

In the maze game, the vector of environmental measure-
ments E consists of the following components: e0 is the dis-
parity term, the distance between the navigation directions
provided by a human and the route that the robot would
have planned for itself, e1 is the collision term, which pe-
nalizes collisions with walls, and e2 is the time delay term,
the amount of time taken for the human to guide the robot
through the maze, compared with the robot’s estimate of
the time it would have taken under its own power. The
computation of s = f(E), the function for measuring suc-
cess of the human directions, is a normalized summation of
the elements of E.

By computing this value s, the robot can label its own
data in order to train a supervised learning algorithm which
will relate the success of a human-directed task with a set



Figure 1: Robot’s estimated cognitive stress level
modestly correlates with physiological metrics.

of measured behaviors H: h0 is the decision interval term,
which measures the time elapsed between the robot reaching
a navigation goal and the human providing a new one, h1 is
the error correction term, which measures the tendency of a
human operator to provide a navigation goal and then subse-
quently provide another before the task is complete, and h2

is the franticness term, which characterizes erratic behavior
for the control inputs. The robot’s model incorporates the
data learned from all participants.

4. RESULTS
In general, the robot correctly predicts an operator’s cog-

nitive load. Figure 1 shows modest correlation between
physiological evidence (breathing rate measured with a Bio-
harness) of an operator and the robot’s estimation of stress.
This is suggestive but not conclusive; it may be that phys-
iological stress measures are not precisely indicative of the
cognitive load which our robots attempt to predict.

Much more convincing is the learned model’s contribu-
tion to task success. The coin game requires the operator
to navigate the maze collecting coins (visible to the human
operator but not to the robot). Delays and errors in suc-
cessfully collecting coins increase an operator’s task penalty
score; as time pressure and the number of robots partici-
pating in the game grows, the operator’s cognitive load is
likewise expected to increase. In the manual test condition,
the robots continue to act according to human instruction
regardless of their model’s estimate of cognitive load, while
in the autonomous assistance mode, the robots revert to
maze navigation behaviors whenever their learned human
behavior models detect high cognitive stress. As shown in
Figure 2, this behavior significantly enhances the overall per-
formance in the game. Robots are able to reliably assess the
cognitive load their human partners are under, even in con-
texts where the actual tasks they are being asked to perform
are opaque to the robot.

5. CONCLUSION
Robots that are capable of understanding the cognitive

Figure 2: Coin game task penalties in manual vs. au-
tonomous assistance modes across 34 test subjects.
p < 0.05 in both instances.

load their operator is experiencing are vital to safe and effi-
cient teamwork in complex scenarios where the proper level
of autonomy and interaction is fluid. Vital communication
cues are embedded in the way we behave in particular cir-
cumstances, and these implicit indicators do not have to be
lost on our robots. Our work’s contribution is to demon-
strate a quantitative, learnable, generalizable model that al-
lows a robot to determine that a user has succumbed to
cognitive stress, even when it cannot independently assess
the instructions it is being given.
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