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ABSTRACT

Robotic teaching has not received nearly as much research
attention as robotic learning. In this research, we used the
humanoid robot Baxter to provide feedback and positive
reinforcement to human participants attempting to achieve
a complex task. Our robot autonomously casts the teaching
problem as one that invokes the exploration/exploitation
tradeoff to understand the cognitive strategy of its human
partner and develop an effective motivational approach. We
compare our learned reinforcement model with a baseline
non-reinforcement approach and with a random reinforcer.

1 INTRODUCTION

Human cognition is complex, hidden, and often difficult to
interpret. A robot’s teaching strategy should be more effec-
tive if the robot possesses some understanding of its human
student’s mindset. In this research, we employ the humanoid
robot Baxter to act as a facilitator during an individual’s
learning process by motivating them extrinsically. When peo-
ple who are less motivated to persevere with a difficult task
can receive some positive reinforcer to overcome their chal-
lenge, their learning rate is expected to increase [1]. We not
only explore the effective teaching strategies available to a
robot, but also try to identify which positive reinforcements
are are most effective at motivating a particular human stu-
dent’s learning style. We divide the subject pool into three
groups, which received no reinforcements, random reinforce-
ments, or learned reinforcements respectively. We compare
the number of mistakes made in each category against each
other. We found that subjects in the learned group made
comparatively fewer mistakes. We also discovered that the
robot’s regret, in a machine learning sense, strongly correlates
with the probability that a test subject makes more versus
fewer mistakes.

2 RELATED WORK

Thomaz [2] explored how feedback influences future learning
processes through a motivational channel which successfully
improves a robot’s learning behaviour. Roy [3, 4] discussed
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effective mutual robot learning and teaching using semantic
labels and shared conceptual hierarchies. Leite [5] performed
experiments where a robot attempted to discover individually
appropriate supportive behaviours based on interactions with
children over time.

3 TECHNICAL DESCRIPTION

When Baxter is trying to motivate an individual, it provides a
positive reinforcer [6]. Four different reinforcer were available:
a reward, verbal encouragement, a motivational gesture, and
none. Initially, the robot assigns a uniform prior across its
potential reinforcement behaviours. When a subject is given
a particular reinforcement, the robot evaluates his perfor-
mance on the immediately following subtask, and reweighs
its reinforcement strategy appropriately:

𝑆𝑡 = {𝜈𝜑𝑠+𝑡−1,
𝜈

|𝑆| − 1
(1− 𝜑)𝑠𝑡−1∀𝑠 ∈ 𝑆�̸�=𝑠+} (1)

where 𝑆𝑡 is the weight distribution over all reinforcement
strategies at time 𝑡, 𝑠+𝑡−1 is the particular reinforcement
strategy chosen at time 𝑡−1, 𝜑 is 1 if the subject successfully
completed the subtask immediately following the previous
reinforcer, and 0 otherwise, and 𝜈 is a learning rate parameter
(empirically set to 0.03).

After several interactions, the robot can conclude which
particular reinforcements are inducing the candidate to per-
form well. To evaluate how well the robot can assess its own
performance as a good teacher, we correlated its regret with
the number of mistakes made by its students. If the regret cor-
relates well with mistakes made, Baxter’s own self-assessment
is reliable, and its representation of reinforcement strategies
is appropriate to the teaching task. Regret is defined as the
difference between the reinforcement strategy selected and
the reinforcer with maximum weight.

𝑅 = 𝑠𝑚𝑎𝑥 − 𝑠+ (2)

The reinforcer that Baxter has assigned maximum weight
is the one that the robot has decided is the most appropriate
strategy for the human learner with which it is currently
interacting. Low regret means that the robot is exploiting
this knowledge to increase the learning rate, while if it selects
a different reinforcement strategy it is exploring to discover
more about the student’s individual motivational receptive-
ness.
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4 EXPERIMENTAL PROCEDURE

𝑛 = 110 participants are recruited for the experiment. The
no reinforcer group contains 𝑛 = 35, the random reinforcer
group contains 𝑛 = 22 and the learned model group contains
𝑛 = 53 participants. Subjects in each group were given three
tasks to perform in ascending order of difficulty. The robot
teaches them to recreate different patterns with markers.
Depending on the test condition, when its students made
mistakes, the robot either provided no motivation, chose a
random strategy, or attempted to learn and use the best
reinforcement strategy for the particular student.

4.1 Performance Evaluation

Figure 1: Performance of participants

Fig. 1 shows the number of mistakes made by participants
in the three conditions. Although the median performance
between the subjects that received no reinforcement and
those whose preferences the robot learned and exploited is
similar, the range of the mistakes differ. More than a quarter
of the participants in the group without motivational feedback
made more mistakes than almost anyone in the learned group.
Fewer mistakes were made by the worst performers in the
learned group than any other. The group receiving random
reinforcement performed at an intermediate level compared
to those that received no reinforcement and those whose
reinforcement was individually learned and tailored by the
robot. The reinforcement strategy is considered to be working
for a participant when the participant starts making fewer
mistakes with same kind of reinforcer, and this also leads to
a lower computed regret for the robot. Positive reinforcement
has a salutary effect on human learning, and a robot that
can learn an appropriate reinforcement strategy will be more
successful at teaching complex tasks.

4.2 Regret Analysis

As mentioned in Section 3, regret is calculated from the in-
terplay between the subject’s performance and the robot’s
attempts to understand and characterize the most appro-
priate reinforcement strategy. Fig. 2 shows the correlation
between the number of mistakes made by the human par-
ticipants and the total regret felt by the robot. The figure
illustrates a very strong 𝑟 = 0.88 relationship between the
variables. Thus, the robot’s computed regret and the test

subjects’ mistakes are positively and tightly correlated, which
demonstrates that the robot’s own exploration and exploita-
tion in the reinforcement learning space is very appropriate
for understanding human responses to the various available
reinforcement strategies.

Figure 2: Regret analysis of the robot

5 CONCLUSION AND FUTURE WORK

In this work, we develop a reinforcement learning model for
robotic teaching where the robot both attempts to learn an
action sequence that leads to high reward (understood as
successful human learning) and represents a human’s own
learning process as a reinforcement process as well, provid-
ing appropriate rewards to motivate better performance. In
our work, both humans and robots use reinforcement learn-
ing techniques to learn from one another, sharing strategies,
knowledge and decision making processes. In our future work
we would like to jointly determine and characterize the men-
tal models of the robots and humans as both learners and
teachers. Robots should be able to serve as teachers and
collaborators to help their human partners.

This work was supported by NSF award #1527828 (NRI:
Collaborative Goal and Policy Learning from Human Opera-
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