
1556-603X/06/$20.00©2006IEEE AUGUST 2006 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 41

I. Introduction

M
ost robots are
designed to
operate in envi-
ronments that

are either highly constrained
(as is the case in an assembly
line) or extremely hazardous
(such as the surface of Mars).
Machine learning has been
an effective tool in both of
these environments by aug-
menting the flexibility and
reliability of robotic systems,
but this is often a very diffi-
cult problem because the
complexity of learning in
the real world introduces very high dimensional state spaces
and applies severe penalties for mistakes.

Human children are raised in environments that are just as
complex (or even more so) than those typically studied in
robot learning scenarios. However, the presence of parents and
other caregivers radically changes the type of learning that is
possible. Consciously and unconsciously, adults tailor their
actions and the environment to the child. They draw attention
to important aspects of a task, help in identifying the cause of
errors, and generally tailor the task to the child’s capabilities.

Our research group builds robots that learn in the same
type of supportive environment that human children have and
develop skills incrementally through their interactions. Our

robots interact socially with
human adults using the same
natural conventions that a
human child would use. Our
work sits at the intersection
of the fields of social robotics
[1], [2] and autonomous
mental development [3].
Together, these two fields
offer the vision of a machine
that can learn incrementally,
directly from humans, in the
same ways that humans learn
from each other. In this arti-
cle, we will introduce some
of the challenges, goals, and
applications of this research.

II. Social Cue Perception
Recognition of certain social cues has been studied extensively
in machine vision and pattern recognition. For example, find-
ing faces, detecting people, and tracking body pose are all
active research problems for the machine vision community.
In this section, we highlight the perception of two social cues
that are less well studied but potent components of social
learning: perception of vocal prosody and perception of inten-
tion from visual motion.

A. Perceiving Vocal Prosody
Vocal prosody can roughly be defined as tone of voice. It is
conveyed by intonation, rhythm, and lexical stress in speech.
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Prosody communicates both paralinguistic information about
the affective state of the speaker as well as linguistic informa-
tion about the intended meaning of spoken utterances.
Prosody contributes to learning by providing a natural vehicle
for social feedback. Even preverbal infants stiffen in response to
prohibitive utterances [4] and tend to smile in response to
encouraging tones [5]. 

In signal processing terms, the perception of prosody is a
complicated problem, involving measurements of pitch, seg-
mentation of temporal phenomena such as syllable, word and
utterance boundaries, and the measurement of stress or energy
features. Most work in this area (including some from our own
group) focuses on building classifiers that discriminate between
prosodic classes such as approval, prohibition, and soothing
tones based on extracted acoustic features [6]–[8].

Because generation of prosody is natural and automatic, and
because the recognition of prosody is present from infancy,
prosody is an attractive method for obtaining feedback for a
developmental system. Our group is currently developing
machine learning applications which rely on prosodic commu-
nication of affect as feedback. Prosody is also influential in
learning tasks because it can aid task segmentation. When
teaching a task to preverbal infants, adults modulate their
prosody to help segment long, complicated instructions into
shorter, simpler tasks [9]. No computational systems to date
have made use of prosody for segmentation.

B. Perceiving Intention from Motion
Psychologists have long known that humans possess a well-
developed faculty for recognizing dramatic situations and
attributing roles and intentions to perceived characters, even
when presented with extremely simple cues [10]–[12]. A
human will watch three animated boxes move around on a
white background, and describe a scene involving tender
lovers, brutal bullies, tense confrontations and hair-raising
escapes. Furthermore, a wide variety of human observers will
construct the same dramatic story out of the same ludicrously
simple animation. Our ability to make sense of a scene does
not seem to depend on rich contextual information, lending
credence to the idea that a machine might be able to accom-
plish the same sort of inference. 

Within our group, we are working to build systems which
automatically analyzes the spatiotemporal relationships of real-
world human activity to infer goals and intentions. Given the
motion trajectories of human agents and inanimate objects
within a room, the system attempts to characterize how each
agent moves in response to the locations of the others in the

room—towards an object, say, and away from the other agent.
To date, rather than attempting to solve the complex machine
vision problem of segmentation, we have been using a distrib-
uted sensing network consisting of radio- and acoustic-enabled
nodes. These devices send messages to one another using a
simultaneous radio broadcast and ultrasound chirp, and the
receiving unit can calculate distance by comparing the differ-

ence in arrival times between the two
signals. With a beacon node attached to
each agent and object involved in a par-
ticular dramatic scenario, and eight listen-
er nodes in fixed positions throughout
the room, we can determine a person or
object’s location within a centimeter or
two through triangulation. 

We then model the movement of a particular agent as a
potential field composed of attractive and repulsive forces from
each of the other agents and objects in the scenario. From a
particular motion trajectory, we generate a set of hypotheses
about possible attractive/repulsive relationships and then use
least-squares fitting to find the best match. The most interest-
ing events, nearly always noticed and properly interpreted by
human observers, occur when an agent’s motivations for
movement change, and our approach can detect these events.
Using simple cues (such as large changes in direction of
motion), we segment an agent’s trajectory into several sections
and compute separate vector field estimates for each segment. 

We have validated this methodology by comparing our
computational models to human performance. Each spa-
tiotemporal recording is translated into an animation (similar
to those of [10]) in order to remove contextual effects. From
both free response questions and from matching possible
descriptions to a particular animation, most subjects identi-
fied the same relationships between the pictured entities and
noticed the same dramatic moments where those relation-
ships change. This technique allows us to continue to
process only low-level sensor information (visual movement
trajectories) in order to obtain simplistic cognitive interpre-
tations of intent and goal. 

III. Using Social Cues to Scaffold
Scaffolding is the process of using simple capabilities that the
agent already has mastered to enable more rapid and/or effi-
cient learning of a complex skill. Social development acts as a
powerful tool for scaffolding, allowing the child to make use
of not only its own competencies, but also to rely on the
knowledge and expertise of an instructor. The higher-level
skills that are enabled by basic social cue recognition are
sometimes social skills, but often are skills that are primarily
sensorimotor, cognitive, or communicative. The primitive
social skills provide the feedback to the instructor on how
well the child understands the current task, provides a sup-
port mechanism by which the adult can manipulate the
responses of the child, and allows the child to receive feed-
back directly from the instructor. To illustrate these points,

Scaffolding is the the process of using simple capabilities
that the agent already has mastered to enable more rapid
and/or efficient learning of a complex skill. Social
development acts as a powerful tool for scaffolding.  
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we provide two examples of low-level social cues providing
scaffolding support for higher-level capabilities.

A. Learning Joint Attention via Social Scaffolding
Joint attention refers to the ability to find and look at the same
object another person is looking at. Joint attention is not
merely a coincidence of two lines of gaze; it is a critical skill for
word learning [13] and is hypothesized to
be one of the core deficits in pervasive
social disorders such as autism [14].
Infants learn to attend to objects of mutu-
al interest over a period of several
months, but mastery is not obtained until
one and a half years of age.

It has been suggested that infants can
learn joint attention skills simply by guessing [15], [16], that is,
when infants think the mother is looking at something inter-
esting, they note her head pose at that particular moment and
search the space around her for interesting objects. The posi-
tion of the first interesting object they find is then associated
with the registered head pose. Although this idea has some
merits, we believe that joint attention can be learned actively
and more efficient way. 

We recently used an active learning paradigm to improve
the accuracy and learning speed for joint attention behaviors
on a humanoid robot [17]. In each experimental trial, six
objects (stuffed animals) were placed at predetermined posi-
tions between our humanoid robot Nico and an experiment
subject (see Figure 1). For each experimental trial, Nico first
looked down toward the objects and then looked back toward
the subject while pointing to one of the objects with its arm.
The response of the subject is recorded by Nico’s computer
vision system for a few seconds and then Nico again looks
down toward the objects. 

The video sequences collected from the experiment are
processed by a tracker which outputs the head pose of the per-
son in the frame [18]. By tracking the change in head pose, we
can estimate when the human has attended to a location and
can associate activities of the robot (such as the pointing ges-
ture) with particular head poses of the human. A Radial Basis
Function Network (RBFN) trained on one experiment sub-
ject’s data (100 associations in the form of head pose and object
position pairs) can predict with 90% accuracy the object of
interest among six possible distracters. If the same RBFN is
used to predict the object of interest of other experiment sub-
jects, it is accurate 73.74% of the time (see Figure 2). Perhaps
most importantly, this simple social interaction allows our sys-
tem to obtain superior recognition accuracy with two orders
of magnitude fewer training examples than either [15] or [16]. 

B. Social Skills Guide Language Development
Social cue recognition can also be a fundamental part of the
development of language, an observation that runs counter to
most purely statistical methods for speech recognition and
understanding. Though most speech recognition systems today

require a fixed vocabulary drawn from a large corpus, it may
eventually be useful to have robots that can learn new words
over the course of their operation, and connect them to their
sensed environments. By considering how human children
learn language, we can potentially avoid costly assumptions
about how such a language-learning system should work, and
ultimately engineer more flexible systems.

A natural first approach for teaching a robot the meanings
of words would be to program the robot to statistically find
images and sound sequences that are commonly experienced
together [19]. However, this approach fails for the deictic pro-
nouns “I’’ and “you,’’ two pronouns that children learn quite
early. Point to the robot’s mirror image and say “This is you,’’
and the robot will have no way of knowing that it should not
refer to itself as “you.’’ On the other hand, if the robot associ-
ates “I’’ with only its own image, it will fail to understand
humans using the word. How, then, do human children learn
these words? 

One tool that human children have at their disposal that
has been previously under-utilized in robotic implementa-
tions is that they appear to learn some words by observing
other people interact, rather than through one-on-one inter-
action with a teacher [20]. By observing the shifting refer-
ence of “I’’ and “you’’ in a conversation, a child can infer
that these words do not refer to particular individuals, but
anyone assuming the roles of speaker and listener. This

FIGURE 1  A humanoid robot (named Nico) uses a learned pointing
behavior to acquire joint attention skills.  When the robot points to
one of the objects lying in front of it, the caregiver will very likely look
at what the robot is pointing to. The robot learns to associate spatial
positions with head postures and can then extrapolate from a head
posture to a location in the world.

Our research group builds robots that learn in the same
type of supportive environment that human children have
and develop skills incrementally through their
interactions. 
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principle has proven useful to us in implementing a robotic
system that can learn the correct usage of “I’’ and “you’’
from observation alone [21]. 

Though a statistical approach that associates everything in
the robot’s environment with everything the robot hears is too
poorly targeted to be useful, statistical approaches can be highly
efficient if the word’s referent in a particular instance is already
understood, and only the meaning or property being referred
to must be inferred. In our word learning system, chi-square
tests are used to rank definitions by statistical significance, so
that words are more likely to be associated with the most
uncommon properties of their referents. Our analysis has
shown that using chi-square tests in this way produces values

that grow linearly with the number of times a word has been
used, and inversely with the frequency with which the prop-
erty has been observed [22]. 

As one final grounding in primitive social abilities, we
have unified the pronoun-learning system with a system
that discriminates self from other using a temporal correla-
tion method [?]. The ability to identify the self in a mirror
reflection and the ability to use the word I effectively are
commonly seen as major milestones in a human infants
development of a concept of self. To discriminate between
self and other, the robot learned the timing of the visual
feedback that results from its own arm’s movement. By not-
ing that there is a characteristic delay between the robot

FIGURE 2  (a) Head pose data of one of the authors (100 samples). Each marker represents a head pose vector projected on the X and Y axis of
a horizontal plane extending from the base of the robot. (b) Projected object position data. The RBFN used for this projection is trained with
data gathered on the same subject. Out of one hundred samples, only six are misclassified. (c) Projected object position data of the other exper-
iment subjects. The RBFN trained on the main test subject is tested on the hundred data samples gathered on five other test subjects. Although
the number of misclassifications is larger, the result is still impressive considering the variations among the five different test subjects.
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issuing a motor command to the arm
and the act of perceiving the visual
movement of the arm, the robot is able
to correctly discriminate its own body
from others, including when it is seeing
not itself directly but rather a reflection
of itself in a mirror (see Figure 3). In
both cases, the robot recognizes itself as
being at a particular location in visual
space and can then refer to itself using the correct pronoun
and can use that word correctly in context when asked
select questions. For example, when trained with a small
grammar that involves catching and throwing, the robot can
correctly state “I caught the ball” when it does so.

IV. Characterizing Human Social Development
In addition to providing increased performance for computa-
tional learning tasks, the construction of perceptual and cogni-
tive systems for allowing robots to interact socially with
humans offers a unique tool for characterizing human social
development. Perhaps most importantly, these robots are
unique tools in the monitoring and diagnosis of social disorders
such as autism. 

Autism is a pervasive developmental disorder that is
characterized by social and communicative impairments.
The social disability in autism is a profound one affecting a
persons capacity for understanding other people and their
feelings, and for establishing reciprocal relationships. While
it is clear that autism is a brain-based disorder with a strong
genetic basis, the cause of autism is unknown. Further-
more, autism remains a behaviorally specified disorder [23];
there is no blood test, no genetic screening, and no func-
tional imaging test that can diagnose autism. Diagnosis
relies on the clinicians intuitive feel for the child's social
skills including eye-to-eye gaze, facial expression, body
postures, and gestures. These observational judgments are
then quantified according to standardized protocols that are
both imprecise and subjective (e.g. [24], [25]). The
broad disagreement of clinicians on individual diag-
noses creates difficulties both for selecting appropriate
treatment for individuals and for reporting the results
of population-based studies [26], [27].

Many of the diagnostic problems associated with
autism would be alleviated by the introduction of quan-
titative, objective measurements of social response. We
believe that this can be accomplished through two
methods: through passive observation of the child at
play or in interactions with caregivers and clinicians,
and through structured interactions with robots that are
able to create standardized social presses designed to
elicit particular social responses. While the information
gathered from both passive and interactive systems will
not replace the expert judgment of a trained clinician,
providing high-reliability quantitative measurements
will provide a unique window into the way in which

children with autism attempt to process naturalistic social sit-
uations. These metrics provide both an opportunity to com-
pare populations of individuals in a standardized manner and
the possibility of tracking the progress of a single individual
across time. Because some of the social cues that we measure
(gaze direction in particular) are recorded in greater detail
and at an earlier age than can occur in typical clinical evalua-
tions, one possible outcome of this work is a performance-
based screening technique capable of detecting vulnerability
for autism in infants and toddlers. 

FIGURE 4  A generic framework for computational models of visual attention.
Features F are extracted from the input scene I, which are then used to deter-
mine a saliency map S that quantifies the interest level for each spatiotem-
poral point.  This saliency map can then be used to generate a sequence of
gaze positions using a particular selection policy.

Scene
I(s,t)

Features
F(s,t)

Saliency
S(s,t)

Feature
Extraction

Gaze
Policy

Attention
Model

Gaze Computation

Gaze Point: g(t)

FIGURE 3  Using a learned temporal filter that characterizes the delay
between issuing a motor command and the perceived movement that
results from that motor command, the robot Nico has learned to dis-
criminate self from other, including when seeing itself in a mirror.  This
basic social skill acts as one piece of scaffolding for more complex learn-
ing, in this case, learning to use the pronouns “I” and “you” correctly.

In addition to providing increased performance for
computational learning tasks, the construction of
perceptual and cognitive systems for allowing robots to
interact socially with humans offers a unique tool for
characterizing human social development. 
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Since the eye can only focus upon one point in the visual
scene, an individual must make a decision as to what to attend
to at any given point in time. This process of allocating atten-
tion can help us gain insight into the internal cognitive
processes of an individual: by watching the eyes, we can
extract what is important to that individual at that moment.
Furthermore, if we know both what is occurring in the scene
as well as where an observer is looking, we can correlate these

two systems with one another and extract from their relation-
ship the intrinsic personal saliency of the visual scene to the
individual by computational modeling. By comparing models
of saliency of one individual to models of saliency of others,
we can derive from this data population specific effects. 

In our work, we have taken the gaze patterns of individuals
with autism and matched controls as these individuals watch
scenes from the 1966 black-and-white movie “Who’s Afraid

of Virginia Woolf?” and analyzed these gaze
patterns computationally. By framing visual
attention in a simplified computational
model (Figure ??), we are able to test the
various interactions between the scene and
the individual. The scene is first pre-
processed using traditional methods for tem-
poral and spatial re-sampling and feature
extraction. These features are then operated
over by an attention model in order to gen-
erate a saliency map. This saliency map is a
computational representation that assigns a
value of the attractiveness of every spa-
tiotemporal point to an observer. Once we
have a saliency map, we can gauge how like-
ly it is that an individual will attend to a spe-
cific location in the scene. A gaze policy
maps the saliency map to a specific gaze
location.

In our analysis of individuals with autism
and typical controls, we are primarily inter-
ested in group effects. For this reason we
obtain the saliency maps associated with each
subject in our study, and we employ these
models in the evaluation of other subjects. In
other words, we fit the parameters of the
visual attention model to match the gaze
patterns of each individual subject. This
results in a series of saliency maps for each
individual. If we look at the locations that
the individual actually attended to, those
associated saliency values should be high
(they will not, in general, be the highest in
the scene, since there are many stochastic
steps involved in the actual human gaze
decision process, and because modeling is in
some way related to estimation). If we look
at the points where some other individual
attends to in the same scene, and we look at
the saliency values associated with the origi-
nal individual’s model, we will find saliency
values that are lower. How far apart the val-
ues are gives us an indication of how differ-
ent the scanning strategies of these two
individuals are.

In [28], for a given spatiotemporal point
(s, t) we used the linearization of the

FIGURE 5  Self-tuning comparisons across movies. Results are aggregated (N = 10 in each
condition) for models trained on one individual (control or autism) and tested on the gaze
patterns of that same individual (watching either the same movie or a different movie).
When a model is trained on one movie and applied to another movie, we get a drop in
performance. However, in all cases, human models describe the gaze of other humans
much better than random as determined theoretically (50%) and empirically (5213%, N =
600). Error bars span two standard deviations.
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FIGURE 6  Cross-tuning comparisons within the same movie clip. Models for the gaze of
controls describe the gaze of other controls better than the any cross-population compari-
son that involves autism, including autism models applied to the gaze of other individuals
with autism.
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11 × 11 image patch centered spatially at s and at times
( t − 100 ms) and ( t − 300 ms) as our features F(s, t). The
attention model is formed by taking the Fisher’s linear discrim-
inant of the locations attended-to by an individual as compared
to locations not-attended-to (as obtained by sampling 15
points well separated spatially from the attended-to location).
That is, for each individual we determine w, the optimal 1D
projection for discriminating between attended-to and non-
attended-to locations. We then obtain our saliency maps by
projecting the features of the scene, i.e., S(s, t) = wF(s, t).
By grouping the statistics associated with each individual
i, Si(g i( t), t), we can obtain insight as to the underlying dis-
tances between individuals with autism and typical controls
(Figures 5 and 6). 

The application of our framework leads to several results.
First, all applications of a human’s model to a human’s gaze tra-
jectory lead to performance much better than those obtained by
random chance (evaluated by synthetic gaze trajectories;
p < 0.01). This suggests that both individuals with autism and
control individuals rely on some common scanning approach,
implying the existence some core human strategy. Further-
more, this result suggests that it is unlikely that a methodologi-
cal bias exists in either the learning technique or the feature
representation. Second, the extremely high matched-applica-
tion (control on self and autism on self groupings) within-
movie scores suggest that each subject relies upon some specific
individual strategy. This specific individual strategy does not
seem to transfer across scenes, as demonstrated by matched
comparison score drops as we move from within-movie com-
parisons to across-movie comparisons, suggesting that top-
down or contextual influences on gaze strategy are significant.
Third, control individuals, who are taken to be socially more
typical than individuals with autism, exhibit much greater
coherence (p < 0.01) in terms of attraction to underlying fea-
tures than cross-application cases that involve individuals with
autism. This suggests that the strategies of controls transfer well
to other controls, but that the strategies of individuals with
autism do not transfer to the same degree to either normal indi-
viduals or even other individuals with autism. 

V. Conclusion
Research at the intersection of social robotics and autonomous
mental development attempts to understand how robots might
develop social learning capabilities. We have shown examples of
systems that generate and perceive social cues (such as vocal
prosody) and that attempt to build cognitive skills from basic
perceptual systems. The role of social development as a facilita-
tor for scaffolding can be seen in the enhanced sensorimotor
learning performance that is seen with reaching and joint atten-
tion behavior and in the methods for enhancing language learn-
ing seen in the example of learning “I” and “you.” Finally, these
same systems that we develop for reasons of computational
expediency turn out to be effective tools in the quantitative
analysis of social behavior and as diagnostic instruments in the
treatment of autism. 
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