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Abstract The functional significance of alternate forms
of plasticity in the brain (such as apoptosis and neuro-
genesis) is not easily observable with biological meth-
ods. Employing Hebbian dynamics for synaptic weight
development, a three-layer neural network model of the
hippocampus is used to simulate non-supervised (au-
tonomous) learning in the context of apoptosis and neu-
rogenesis. This learning is applied to the characters of a
pair of related alphabets, first the Roman and then the
Greek, resulting in a set of encodings endogenously devel-
oped by the network. The learning performance takes the
form of a U-shaped curve, showing that apoptosis and
neurogenesis favorably inform memory development. We
also discover that networks that converge very quickly
on the Roman alphabet take much longer to handle the
Greek, while networks which converge over an extended
timeframe can then adapt very quickly to the new lan-
guage. We find that the effect becomes increasingly pro-
nounced as the number of neurons in the dentate gyrus
layer decreases, and identify a strong correlation between
cases where the Roman alphabet is quickly learned and
cases where a few neurons saturate many of their weights
almost immediately, minimizing participation of other
neurons. Cases where learning the Roman alphabet re-
quires more time lead to larger numbers of neurons par-
ticipating with a larger diversity in synaptic weights. We
present an information-theoretic argument about why
this implies a better, more flexible learning system and
why it leads to faster subsequent correlated Greek alpha-
bet learning, and propose that the reason that apoptosis
and neurogenesis work is that they promote this effect.
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1 Introduction

The hippocampus, a brain structure located in the me-
dial temporal lobe, appears to be responsible for estab-
lishing novel associations during the learning process. As
the brain forms new associative memories, hippocam-
pal neurons change their stimulus-selective response pat-
terns (Wirth S (2003)). This change in response patterns
suggests similarities to the learning processes of artificial
neural networks. Since the detailed internal behavior of
neurons in vivo is difficult to investigate, we seek to gain
insight by studying the behavior of their simulated par-
allels.

Adult neurogenesis occurs in man as well as other
mammalian species (Gould E (1999), Makakis and Gage
(1999)). This phenomenon appears most robustly in cer-
tain brain regions, particularly the dentate gyrus (DG)
of the hippocampus and in the olfactory system (Erikson
P (1998), Kornack D (2001)). The functional significance
of neuronal plasticity (such as apoptosis and neurogene-
sis in the brain) is not easily observable with biological
methods (Aakerlund and Hemmingsen (1998)). Neural
network simulations, therefore, can provide a salient pro-
cedure for direct analysis of learning and memory prop-
erties of plasticity in neural systems. For a review of ear-
lier hippocampal network modeling and simulation, see
Gazzaniga M (2002).

In Chambers R (2004), computer simulations were
used to study the possibility that replacing neurons could
favorably impact cognition as well as a variety of other
brain functions informed by hippocampal activity (e.g.
short and long term memory formation, adaptations to
sex and stress hormones, and various forms of mental
illness). Those simulations modeled learning tasks em-
ploying a three-layer neural network model of the hip-
pocampus. These layers modeled, in turn, the entorhinal
cortex, the dentate gyrus, and CA3. The network was
made to learn a representation of the Roman alphabet,
the first task. Upon completion of this task, the network
was made to learn a representation of the similar but
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not identical Greek alphabet, the second task. The pos-
tulate that neurogenesis favorably influences the second
task was demonstrated.

We take information in the brain (i.e. memory traces)
to be recorded in a distributed manner in the synapses
of the relevant neuronal assemblies. The recording mech-
anism takes the form of adjustments to the strength of
these many synaptic connections. This synaptic adjust-
ment proceeds by means of a dynamic learning process
that must be simulated as part of the model. In the pre-
vious study (Chambers R (2004)), the model used the
back-propagation algorithm, a method of learning (of the
so-called supervised type) commonly employed in neural
net simulations (Haykin S (1999)). Here we shall invoke
Hebbian learning, an unsupervised form of neural net
learning dynamics that more realistically models poten-
tial brain circuitry. We shall show that neurogenesis fa-
vorably informs learning (i.e. memory trace formation)
in the more realistic modeling context of Hebbian learn-
ing. We still find that the rate of learning of the Greek
alphabet vis-a-vis the rate of apoptosis and neurogen-
esis, on average, forms a U-shaped curve. A moderate
amount of churn in the lifecycles of individual neurons
enhances the learning ability of the network, while too
much reduces the ability of a network to retain and ex-
ploit information.

The use of an unsupervised form of learning requires
development of an intrinsic representation (an endoge-
nous encoding) of the memory traces. That is, in place
of guiding the model’s output to take on an extrinsically
(and arbitrarily) specified encoding of the information
to be recorded (as with the supervised learning proto-
col of back-propagation), we take as a crtitical aspect
of the learning ability, the capacity of the model (i.e.
of the hippocampus) to implement an intrinsic and au-
tonomous method for encoding of the information being
presented. That a neural system has the functionality
to do this is a key and novel feature of the present ap-
proach to the study of neurogenesis, and one that we
believe accurately models memory establishment in the
brain. We are aware that our observations may inform
issues of natural selection.

Using an autonomous learning model in this fash-
ion, we can begin to approach questions of why this cy-
cle of cell death and rebirth increases learning plasticity.
Our simulation allows us to characterize and investigate
the conditions under which a task such as memory for-
mation succeeds and fails. We uncovered surprising be-
havior with regards to the ease with which a network
learned the two alphabets. Briefly put, when we present
a randomly-weighted network with the Roman alphabet,
sometimes convergence occurs very swiftly, other times
more slowly, and yet others not at all. We discovered
that quick-converging networks have a much more diffi-
cult time when presented subsequently with the Greek
alphabet than do those that were required to invest more
time in learning the Roman.

A computational model such as ours allows us to in-
vestigate why this might be so. We demonstrate pat-
terns based on the neuron participation rate and the
level of saturated neurons, and suggest an information-
theoretic explanation for how apoptosis and neurogenesis
might help the hippocampus to escape situations where
its plasticity and information capacity are compromised.
In other words, cytotoxicity prevents situtations where a
neural network settles into a configuration where all de-
cisions are made by relatively few neurons, to the detri-
ment of its overall capacity, flexibility and power.

This paper is organized as follows: Section 2 describes
the architecture of our hippocampus model, including a
discussion of the Hebbian dynamics used in the learn-
ing process. Section 3 explains the specific process and
parameters used during the alphabet learning tasks, and
presents our results. Section 4 discusses the experimental
results and what they demonstrate about the efficacy of
the apoptosis and neurogenesis mechanisms. In addition,
we demonstrate how our results support an information-
theoretic argument as to why these two processes should
be so important to the flexibility of the learning process.
Finally, we sum up our results and contributions in Sec-
tion 5.

2 Experimental Setup

2.1 The Neural Net Architecture, I/O Dynamics,
Learning Dynamics

2.1.1 The neural circuit

The hippocampus is comprised of three layers. The first
layer, the entorhinal cortex, is connected by the perforant
path to the second layer, the dentate gyrus. The latter
in turn is connected by the mossy fibers to CA3, the
third layer. In the model, we shall refer to these as layer
k (k = 1, 2, 3 respectively). The kth layer shall have
a number, Nk of neurons. The perforant path and the
mossy fibers are simulated by forward excitatory (synap-
tic) connections between the model’s layers. The model
also includes lateral inhibitory connections within lay-
ers 2 and 3. (See Figure 1). Each synaptic connection is
characterized by an associated weight wkl

ij , a real valued
parameter, where the indices denote a connection from
neuron j in layer l to neuron i in layer k. Of course only
the superscript pairs 12 and 23 (for forward connections)
and 22 and 33 (for lateral connections) are relevant, and
a synaptic weight corresponding to any other indices that
may appear is taken to be zero. We suppose that when
a neuron is connected to another neuron that it is con-
nected to all of the neurons in the latter’s layer. We shall
describe such an arrangement as being a fully connected
one.

Setting an associated synaptic weight to zero accomo-
dates missing connections and allowed us to experiment
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showing a 7x5 array of
neurons with a pixelated
letter Z as a sample input

Layer 1 (entorhinal cortex) inhibitory connections
Fully connected lateral

1 1 1 1 1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
1 1 1 1 1

Layer 2 (dentate gyrus) Layer 3 (CA3)

Mossy fibers

Fully connected forward excitatory connections:

Perforant path

Fig. 1 Schematic of the neural network. Arrows indicate a
fully connected set of synapses, inter- or intra-layer, as the
case may be.

with different levels of connectivity. In the simplest ar-
rangement, each node was completely connected – each
neuron’s output connected to every neuron in its own
layer and every neuron in the succeeding layer. Connec-
tions could disappear if the learning process drove their
associated weights to zero, but every synapse began the
process with a nonzero value. In other tests, each weight
had a certain chance of being set to zero during the net-
work’s initialization, representing a nonexistent connec-
tion, and we furthermore prevented these weights from
changing during the learning process. We used values of
25%, 50% and 75% respectively for the proportion of
these missing connections. Motivated by the process of
neurogenesis, we are modeling the case where neurons
don’t necessarily spring into being fully connected with
all of their counterparts.

2.1.2 Input/output dynamics

Layer 1 is the input layer to the neural net, while the
output of layer 3 is taken to represent the output of the
network as a whole. The neuronal input/output dynam-
ics are defined as follows. Let yl

j denote the output of

neuron j(j = 1, . . . , Nl) in layer l(l = 1, 2, 3). Then vk
i ,

the total weighted input to neuron i in layer k(k = 2, 3)
is specified as follows.

vk
i =

Nl
∑

j=1

w
k,k−1

ij yk−1

j +

Nk
∑

j=1

wkk
ij yk

j (1)

The neurons are taken to be McCulloch-Pitts neu-
rons.1 This implies that for k = 2, 3, the output yk

i is

yk
i =

{

1, vk
i ≥ Θk

0, vk
i < Θk (2)

where Θk is the neuronal firing threshold.

1 McCulloch-Pitts neurons are among the most basic model
neurons. Since we are able to demonstrate the relevant apop-
tosis/neurogenesis effects of interest with these neurons, the
use of a more complex model neuron is not called for.

2.1.3 Input/output sequencing

Each exogenous input (an alphabetic character) is pre-
sented at layer 1. (See Figure 1) The outputs of all neu-
rons in layers 2 and 3 are specified using (1) and (2).
These neurons are taken to fire in the following order.

y2
1 , y

2
2, · · · , y

2
N2

, y3
1 , y

3
2, · · · , y

3
N3

(3)

So layer 1 fires first and then layer 2 fires, and as
indicated in (3), the neurons fire in sequence within each
layer as well. The numbering of the neurons within a
layer is chosen arbitrarily.2

2.1.4 Learning

Synaptic weights are initialized randomly, and they change
according to Hebb’s law, that is, according to correlation
between input at a synapse and subsequent firing/not-
firing of that synapse’s neuron. This law is implemented
as follows.

∆wkl
ij = τ(akl

0 yk
i yl

j + akl
1 yk

i + akl
2 yl

j) (4)

where τ is the learning rate.3 The coefficients akl
j appear-

ing in (4) are chosen so that the computed weight change
is consistent with the correlations (i.e., with Hebb’s law)
that arise during the learning stage. A neuron’s weights
are updated immediately upon that neuron’s firing.

2.1.5 Clock cycle

The learning algorithm proceeds with a clock timing in-
dexed with n, say. To indicate that a variable changes
with clock cycle, this time index n will be appended
to that variable accordingly. A tick (an advance of the
clock) is specified in the next section.

2.2 The Learning Tasks

2.2.1 The alphabets and their representation

The neural net is to learn the upper case characters of
two different alphabets, the Roman and the Greek. These
are represented in pixelated form, an example of which
(the letter “Z”) can be seen in Figure 1. Illustrations of
the complete set of inputs can be found in Chambers R
(2004). Note that these two alphabets have 14 character
symbols in common.

2 The averaging of many randomly initiated runs, charac-
teristic of our approach to the simulation, accomodates our
fixing of a single ordering choice for all of the neurons withn
a layer; a choice made for reasons of simplicity, causing no
loss of generality.

3 Use of this basic choice of learning rule is validated for
reasons analogous to those cited in footnote 1.
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2.2.2 The internal coding

As a first task, the neural net (neural circuit) is to learn
the characters of the Roman alphabet, and to accomplish
this task, the net is repeatedly presented with represen-
tations of those characters lexicographically. Referring to
Figure 1, we see that layer 1 is modeled as a pixelated
retina. The characters are presented in pixelated form on
that retina, and so this representation defines the succes-
sive inputs y1(n), n = 1, 2, · · · as binary vectors. (Note
that this assignment of the time index implies that the
clock ticks once after the last neuron in layer 3 fires and
the latter’s weights are updated.) The net creates an
evolving binary encoding of each character as the latter
is inputted. This encoding is defined as the correspond-
ing vector of network outputs y3(n), n = 1, 2, · · ·, and
so, a character’s encoding is a vertex of the unit binary
2N3-cube. The alphabet itself is encoded by a collection
of such vertices. We take the net to have learned the
alphabet (ceasing thereby the learning presentations) if
the following two conditions are met.

1. The output encoding the alphabet is a collection of
M (where M is the alphabet size) vertices, that is,
each character corresponds to a unique vertex.4

2. This encoding is repeated exactly without exception
during presentation of the entire alphabet an agreed-
upon number (say R > 0) of times.

The weights associated with the neurons continue to
change according to Hebb’s Law as long as we continue
to present the alphabets. Thus, the learning process con-
tinues even after the network has settled on a unique en-
coding. However, once such an encoding had established
itself and repeated the number of times specified by R,
we halted the test run and began another.

2.2.3 The learning task changes

After the net has learned the Roman alphabet, the task
is switched to learning the Greek alphabet. The learning
of the Greek alphabet proceeds as in the earlier manner
for the Roman. Finally, for some of our experiments, the
network attempts a third task – that of relearning the
Roman alphabet.

2.3 Modeling Apoptosis and Neurogenesis

Finally, we modeled cytotoxicity and neurogenesis by as-
suming that neurons with highly-saturated weights were
more likely to perish from overuse. Whenever we con-
ducted a round of apoptosis, we assigned to each node a

4 A unique encoding for each letter was the goal, but we
found that convergence occurred much more quickly and of-
ten if we allowed a small number of redundant encodings.
This was formalized as the “remission factor” f , described in
section 3.1.5.

probability of death. Each node added the absolute val-
ues of all of its weights together, and the probability of
cell death increased linearly from zero, according to the
amount by which the weight sum exceeded a threshold.5

To implement this, let w21
i , i = 1, · · · , N2 denote the

vector of synaptic weights corresponding to forward con-
nections into neuron i in layer 2, and let w22

i be the anal-
ogous vector corresponding to lateral connections within
layer 2 into that neuron. Then we compute

Ti = ||w21
i || + ||w22

i || (5)

Here ||z|| denotes the Euclidean norm of a vector z. Ti

is a measure of the cyto-toxicity of the corresponding
neuron. In addition to the probabilistic cell death men-
tioned above (used in the experiments described in sec-
tion 3.2.3), we also performed experiments (described in
section 3.2.2) where we controlled exactly how many neu-
rons would be replaced. Neurons were sorted according
to their Ti values, and the n neurons with the highest
cytotoxicity were replaced by new, randomly initialized
neurons.

3 The Simulation

3.1 Simulation Protocols and Parameter Values

3.1.1 Layer sizes

We take N1 = 35, corresponding to a 7x5 input retina.
N2 and N3 are taken to vary over collections of different
values. In particular, N2 ∈ {16, 20, 24, 28, 32} and N3 ∈
{11, 12, 13, 14}.

3.1.2 Synaptic weights, initial values, floor and ceiling

The magnitudes of the initial values of synaptic weights
are chosen randomly from a specified interval I, with
the forward excitatory weights positive and the lateral
inhibitory weights negative. The weights develop accord-
ing to (4), the learning formula, but they are not allowed
to change sign nor are their magnitudes permitted to
exceed a ceiling C. Specifically, we take I = [0, 0.1] and
C = 0.125. If a computed weight change would cause the
value of the weight changed to exit the interval [0, C] on
the left or right, its actual value is truncated and taken
to be the floor or ceiling value 0 or C, as the case may
be.

3.1.3 Learning rate adjustment

The displacements calculated by iterative systems, such
as the dynamical systems ((1), (2), and (4)) in our simu-
lation, change as the learning progresses, typically trend-
ing smaller as convergence is approached. It is useful to

5 Those neurons with the largest weights will tend to work
hardest and age the fastest, and so, would seem to have a
biological need to be replaced.
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vary the learning rate τ , decreasing and increasing it to
stimulate the weight displacements to trend smaller or
larger more responsively.6 Among the many ways to in-
stall such a feature, the following autonomous choice was
taken. Specifically the learning rate τ is varied according
to the following rule.

τn+1 = τn

||y3(n) − y3(n − 1)||H + 1

||y3(n − 1) − y3(n − 2)||H + 1
(6)

Here ||y3||H denotes the Hamming norm of y3 =
(y3

1 , · · · , y
3
N3

), the binary valued vector of layer 3 outputs
(that is, the net’s output vector).

3.1.4 Hebb rule parameters

For the forward connections from layer l to layer k (i.e.,
for (k, l) = (2, 1) and (3, 2)), we take akl

0 = 1.5, akl
1 =

−0.5, and akl
2 = −0.5. For the lateral connections (i.e.,

for (k, l) = (2, 2) and (3, 3)), we take akl
0 = −1.5, akl

1 =
0.5, and akl

2 = 0.5. These choices are seen to accomodate
the correlation requirements of Hebb’s rule.

3.1.5 Learning epoch, repeat parameter, and remission
factor

The process of displaying the characters of an entire al-
phabet in lexicographical order on the input retina (each
character display followed by the specified neural fir-
ings and weight updates associated with that display) is
called a learning epoch.7 During the set of experiments
described in Section 3.2.2, the number of such epochs
allowed in a training run was limited arbitrarily to 400.
For the tasks described in Section 3.2.3, we removed from
consideration all trials that failed to converge within 200
epochs.

The value of the repeat number (for encodings) is
set arbitrarily to R = 3. We don’t expect learning al-
ways to be perfect (complete) in a reasonable number of
epochs, and so we also introduce a learning remission fac-
tor denoted by f . That is, we specify a fraction f of the
alphabet that, if learned, is considered adequate. In one
experiment, values for f are chosen from {0.8, 0.85, 0.9},
while in the others, only f = 0.9 is used. Allowing the
network to misclassify more letters improved the num-
ber and speed of convergences, of course, but not enough
to be worth sacrificing accuracy. Besides, when investi-
gating differences in convergence timing, reducing the

6 Global convergence of iterative dynamical systems is
accelerated when the displacements they compute, usu-
ally trending larger-to-smaller, are exogenously exaggerated
through correlated variations in the learning rate. This com-
monly used algorithmic feature is sometimes referred to as
over/under relaxation.

7 Since there are M = 24/26 characters in the
Greek/Roman alphabets, a learning epoch takes 24/26 clock
ticks.

classification threshold would reduce the disparities be-
tween high- and low-performing networks, blunting our
perception of the difference.

3.1.6 Threshold parameters

The specific choices of thresholds are Θ2 = Θ3 = 0.1.

3.2 Simulation Results
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Fig. 2 Average number of epochs required to reach conver-
gence
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Fig. 3 Fraction of runs completing learning (i.e., converging
within 400 epochs)

3.2.1 Partial connectivity

An attempt to model partially-connected networks failed
to produce any useful results. With only 25% connectiv-
ity, we never managed to produce a network that con-
verged within the time limit. Performance improved at
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Fig. 4 Normalized convergence fraction (ratio of Figures 2
and 3)
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f
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Fig. 6 Convergence performance with 16 DG nodes

the 50% and 75% connectivity levels, but the only no-
ticeable difference between the results from a fully con-
nected network and those from the partially connected
ones was that the latter required more time to reach the
same results.
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Fig. 7 Convergence performance with 24 DG nodes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 20  40  60  80  100  120  140  160  180  200

N
ev

er
 F

ire

Epochs to Convergence (Roman)
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DG nodes
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Fig. 9 Number of saturated DG neurons after Roman al-
phabet learning (out of 24 total DG nodes)

3.2.2 Learning Greek with cytotoxicity

In this experiment, a neural network is exposed to the
Roman alphabet until it converges on a unique output
encoding for each letter. From this configuration, the net-
work then embarks on the task of learning the Greek al-
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phabet, with varying levels of apoptosis and neurogenesis
occurring.

A particular simulation case corresponds to a triplet
(f, N2, N3). (60 = 3x5x4 cases in all.) Each case was run
20 times with newly chosen random starting weights each
time, 1200 runs in all. Any particular one of these runs
is indexed by the symbol8 (f, N2, N3)(r), r = 1, . . . , 20.
The results are presented in 4 plots. These are the 3
plots corresponding to (f, N̄2, N̄3)(r̄), where the upper
bars represent averaging over all values of the barred
symbol, and one plot corresponding to (f̄ , N̄2, N̄3)(r̄).
The first three plots, therefore, represent an average over
400 runs each, while the last represents an average over
1200 runs. The plots, each containing three curves, are
given in Figures 2 - 5. For the first three plots, the three
curves correspond respectively to the three choices of f ,
namely {0.8, 0.85, 0.9}.

The abscissas of the plots represent the different learn-
ing tasks. The first data point on each curve represents
the initial task of learning the Roman alphabet. Each
succeeding point denotes the task of learning the Greek
alphabet with g neurons replaced (g = {0, 1, 2, 4, 5, 12, 16})9

in layer 2.
Figure 2 is a plot of the convergence time in epochs

needed for the learning of an alphabet to occur. In this
experiment, if learning in a run does not occur before the
limit of 400 epochs is reached, then 400 is taken as a de-
fault value of the number of learning epochs required for
that run. The U-shape of these curves shows that replac-
ing an increasing number of neurons through apoptosis
and neurogenesis leads to an increase in the ability to
learn new information, up to a point. The increase in
learning plasticitiy from neurogenesis dominates the for-
getting effect of apoptosis until the latter effect becomes
sufficiently great.

Figure 3 is a plot of the fraction of runs (out of 20)
that complete the learning before reaching the 400-epoch
limit. (Recall that completion of learning means the in-
variance of the intrinsic encoding achieves the repetition
requirement (R=3) subject to the remission factor f . In
this case, the U-shape is inverted, but demonstrates the
same effects as Figure 2. To a point, apoptosis and neu-
rogenesis increase the ability of the network to learn new
information. As too many neurons die, however (at the
far right of the figure), too much information about the
common characters between the Greek and Roman al-
phabets is lost, and the network’s prior knowledge of the
Roman alphabet provides less assistance in quickly con-
verging on the Greek alphabet.

The effects shown in Figures 2 and 3 are related and
should be examined together. This is done in Figure 4,

8 Other parameters (such as a and Θ) associated with a
run are not displayed as an index, since those parameters are
fixed in value.

9 Replaced, meaning as customary, the apoptosis of g neu-
rons followed by their replacement through neurogenesis,
moreover with randomly-selected synaptic weights.

which is a plot of the normalized fraction of cases that
converged. In particular, we first compute the ratio of
the corresponding curves in Figure 2 by those in Figure
3. This curve is in turn normalized by its own value at
the second point (where Greek is learned without neuro-
genesis). By doing so, the U-shaped curve, which shows
the initial increase and subsequent decrease of learning
effectiveness as the rate of apoptosis and neurogenesis
increases, becomes even more pronounced.

Figure 5 is a plot corresponding to (f̄ , N̄2, N̄3)(r̄).
Namely it is a plot of the average of the three curves in
each of Figures 2 (Epochs to convergence), 3 (Conver-
gence percentage) and 4 (Relative convergence). These
averages therefore illustrate the networks performance
over all 1200 runs.

3.2.3 Patterns of learning and network activity

Having investigated the alphabet-learning behavior over
a wide variety of network configurations and initial pa-
rameters, we turned to investigate the learning process
and parameters in greater detail. We sought patterns
between the rates of learning of the two alphabets, the
activity level of the various neurons involved, and the dis-
tribution of neuronal weights within individual network
neurons. In this experiment, we used only two network
configurations, because we were interested in clarifying
the relationship between the process of learning the two
alphabets. Thus each simulation again corresponds to
a triplet (f, N2, N3), but these take on only the values
(0.9, 16, 13) and (0.9, 24, 13). Also, we conduct each trial
with only 200, as opposed to 400, epochs.

Figure 6 plots the number of epochs it took for a
network to learn the Greek alphabet against the num-
ber of iterations it previously spent learning the Roman
alphabet. The continuous plot (in this and all subse-
quent figures) is a least-squares best-fit of the function
f(x) = axb+c. In nearly every case, the Greek was easier
for a network to learn after having been exposed to the
Roman. However, the key result is that a network that
happened to converge very quickly with the Roman al-
phabet almost always took a comparatively long time to
converge on the Greek, while networks that had to work
for a long time before finally learning Roman letters took
to Greek very quickly.

Figure 7 shows the same kind of data, but for a net-
work with a larger dentate gyrus (24 as opposed to 16).
Here, the time trade-off is much less pronounced, and
several outliers disturb the picture. Disregarding those,
the trend still exists.

Figure 8 shows the fraction of neurons within the den-
tate gyrus which never fire after converging on the Ro-
man alphabet. In other words, these neurons fail to par-
ticipate in letter identification in any way. Not one of the
26 input patterns elicits any activity from them – they
may as well not be there, as far as the letter-recognition
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task is concerned. Networks that converge quickly have a
far greater incidence of these non-participatory neurons.

Figure 9 shows the number of neurons that are satu-
rated after converging on the Roman alphabet. A satu-
rated neuron is one whose weights exceed the apoptosis
threshold, and are thus candidates for potential death.
Once again, the same curve type emerges. Quick con-
vergence leads to a large number of stressed, saturated
neurons.

3.2.4 Relearning and persistence of memory

The final set of experiments involved allowing the net-
works to revisit the Roman alphabet after they had con-
verged on encodings for the Greek letters. We were inter-
ested in the persistence of memory, and whether apop-
tosis would adversely affect recall of old memories, just
as it enhances learning new data. This does not seem to
be the case. There were no statistically significant differ-
ences in the relearning rate, whether apoptosis occurred
or didn’t, and whether Roman or Greek learning went
quickly or slowly.

4 Analysis

The ability to learn the Greek alphabet after the Roman
has been learned is favorably informed by apoptosis and
neurogenesis. After having learned the Roman alphabet,
learning the Greek alphabet usually takes 30-40% fewer
learning epochs. The Roman learning places the network
in a favorable posture for the subsequent learning of the
Greek. By favorable posture, we mean that the synaptic
weights developed by the learning of the Roman charac-
ters already reflect information about the 14 upper-case
characters that the alphabets have in common.

Neurogenesis increases the efficaciousness of the Greek
learning. The curves in Figure 2 descend with each in-
crease of the number g of new neurons made available
by the neurogenesis to the Greek learning, up to a point.
When too many neurons are replaced the improvement
levels off and then begins to reverse. We interpret this
by noting that while the new neurons are aiding the
learning of the Greek by replacing older neurons which
have become saturated,10 the apoptosis of the old neu-
rons trained on the Roman alphabet causes a progressive
loss of that Roman alphabet information (the common-
ality of the alphabets) that was responsible for the initial
learning-performance gain. The U-shape of the learning
curve comes from a tradeoff between a learning and a
forgetting effect.

The experiments described in section 3.2.3 throw more
light on this tradeoff, and exactly what is happening

10 As previously mentioned, a neuron is taken to be satu-
rated when the Euclidean norm of the vector of input weights
reaches a certain threshold. This happens when the weights
have been driven by the dynamics to be near the ceiling C.

within the network structure. Rapidly converging net-
works start out with a few neurons that, by chance, have
weights that help a great deal to differentiate among let-
ters of the Roman alphabet. These neurons tend to domi-
nate the network, quickly suppressing competing neurons
to the point of quiescence, as shown in Figure 8.

Furthermore, the weights of the neurons that do par-
ticipate become saturated (Figure 9). Thus, when the al-
phabet is learned quickly, the network consists of many
neurons that are effectively ignored and others which fire
often and indiscriminately.

From an information-theoretic perspective, the poor
capacity for learning additional information exhibited by
these inflexible, saturated, dominating neurons comes as
no real surprise. A network in which all neurons partici-
pate, and where each synapse is weighted differently, can
convey a large amount of information. A neuron with
a well-distributed set of weights has a huge number of
possible internal states, and therefore potentially a large
amount of entropy (in the information-theoretic sense).
The better-distributed the weights are, the closer the en-
tropy will come to the theoretical maximum log(2K+1),
where K is the number of internal states available to the
neuron.

Entropy, of course, translates directly to information
content. In the case of the networks that resist learning
the Greek alphabet after settling on the Roman, this con-
tent is quite low. Many neurons don’t participate at all,
so their potential to encode information is completely
ignored. Furthermore, the neurons that do participate
have a very limited internal state space – a huge fraction
of all possible input encodings lead to exactly the same
output, since many of their weights are saturated at the
maximum. This being the case, the fact that they fire
comes as no surprise. Low surprise means little informa-
tion.

Thus networks that slowly converge on the Roman
alphabet carefully refine their weights, preserving a wide
diversity of possible firing patterns and exploiting the ca-
pacity of many more neurons than in the case of rapidly-
converging networks. Such networks are simply more ef-
fective – they are able to encode and transmit more infor-
mation than their fast-learning counterparts that over-
work some of their constituent neurons and underemploy
others. Our evidence suggests that this is why they can
learn new information much more quickly.

By preferentially replacing ill-behaved neurons that
simultaneously suppress participation by others and carry
little information themselves, apoptosis and neurogene-
sis help to maintain a network information capacity that
is closer to ideal. This informs the puzzling result that
apoptosis does not have a negative impact on relearn-
ing old information. The loss of these dominating but
information-poor neurons is more than made up for by
the increased responsiveness and activity of the other
neurons in the network.
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5 Contributions

We employed an autonomous (i.e., unsupervised) form
of learning to model and simulate the recording of in-
formation in the hippocampus. This required that the
model be capable of developing memory traces that are
intrinsic representations (endogenous encodings) of the
information to be learned. Demonstrating that a neural
system has the functionality to do this is a key and novel
feature of the present approach.

We have uncovered striking patterns in the learning
behavior of unsupervised neural networks, suggesting a
relationship between the time and effort it takes to learn
something and the flexibility and adaptibility of that
knowledge once learned. These findings provide more
support and justification for the idea that apoptosis and
neurogenesis in the hippocampus promote increased and
sustained learning ability. We have accounted for differ-
ences in learning ability by demonstrating the deleterious
effects of both saturated and silent neurons, effects that
can be mitigated through the mechanism of cell death
and replacement.

Finally, we have introduced some ideas about the the-
oretical information capacity of neural networks, as illus-
trated by the alphabet learning experiments. We expect
these findings to inform the development of procedures
and rules of thumb for extracting good performance out
of neural network frameworks in the future.
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