Problem 2.

(a) Basic idea: The machine nondeterministically guesses (when reading an input symbol 0) or waits for a substring of $0(0+1)^*0$ that is forthcoming. $0,1$.

M: Start $\xrightarrow{o} a \xrightarrow{0,1} 0 \xrightarrow{0,1} 0 \xrightarrow{0,1} 0 \xrightarrow{0} 0$.

q_{start}: nondeterministically wait or guess on an input symbol 0.

q_1, q_2, q_{false}, q_{true}: having encountered an input symbol 0, verify if a substring of the form $0(0+1)^*0$ appears.

Can verify that $\forall x \in (0,1)^* \text{ M accepts } x$ iff $x \in (0+1)^*0(0+1)^*0$.

(b) The given language is the disjoint union of the two languages:

$L_a = \{ x \in \{ 0, 1, c \}^* \mid \#(x) > 3 \text{ and } 0 \leq \#(x), \#(c(x)) \leq 2 \}$

$L_b = \{ x \in \{ 0, 1, c \}^* \mid \#(x) > 2 \text{ and } 0 \leq \#(x), \#(c(x)) \leq 2 \}$.

Basic idea for constructing a DFA M_a accepting L_a: each state has 3 components to record $\#(y) \#(x), \#(z)$ in the input consumed so far.

$Q = \{ (i, j, k) \in N^3 \mid i \leq 3, j \leq 2, \text{ and } \#(y) \leq 3 \}$.

$N = \{0, 1, 2, \ldots \}$

Start state: $(0, 0, 0)$

Set of accepting states: $\{ (3, j, k) \mid 0 \leq j, k \leq 2, 3 \}$.
1-step transition function \(s : Q \times \{a,b,c\} \rightarrow Q \) is defined as:

\[
\begin{align*}
\sigma ((i,j,k), a) &= (i+1, j, k) & \text{if } i \leq 2 \\
\sigma ((i,j,k), b) &= (i, j+1, k) & \text{if } j \leq 1 \\
\sigma ((i,j,k), c) &= (i, j, k+1) & \text{if } k \leq 1 \\
\sigma ((i,j,k), \text{exceed}) &= \text{exceed} & \text{if } j \geq 2 \\
\sigma ((i,j,k), \text{exceed}) &= \text{exceed} & \text{if } k \geq 2
\end{align*}
\]

For \(\delta(a,b,c) \), \(\sigma (\text{exceed, exceed}) = \text{exceed} \).

A DFA \(M_b \) accepting \(L_b \) is similar.

A desired FA accepting \(L_a \cup L_b \) is:

\[
\begin{align*}
\text{start} &\rightarrow Q_a &\rightarrow M_b
\end{align*}
\]

(c) Given that an FA \(M \) accepting \(L \) (without loss of generality, we may assume \(M \) has one accepting state \(Q_{\text{accept}} \)), we construct an FA \(M' \) accepting half \((L) \).

The basic idea is that \(M' \) keeps track of two states in \(M \) (using two coordinates/tracks in a state of \(M' \)):
The "forward simulation" is defined as follows:

For each input symbol read in \(M' \), \(M' \) uses its first and second coordinate/track to simulate \(M \) on that symbol.

(At the same time, \(M' \) simulates the backward simulation starting at \(q_{accept} \).)

The "backward simulation" is as follows:

Simultaneously, \(M' \) uses its second coordinate/track to simulate \(M \) backwards on a guessed symbol.

\(M' \) accepts an input \(x \) if the forward simulation (on \(x \)) and the backward simulation (on a guessed \(y \), \(|y| = |x| \)) are in a common state of \(M \).

Formally, assume that NFA \(M = (Q, \Sigma, \delta, q_0, q_{accept}) \) accepts \(L \).

Construct an NFA \(M' = (Q', \Sigma, \delta', q'_0, F') \) as follows:

\(Q' = Q \times \overline{Q} \), \(q'_0 = (q_0, q_{accept}) \),

\(F' = \{(p, q) \mid q \in Q \overline{3} \} \),

and \(\delta' : Q' \times \Sigma \to 2^{Q'} \) is defined as:

\[\delta'(p, q) \circ a = \delta(Q', q_0, \overline{Q} \overline{S}) \circ a \]

forward simulation

\[\delta'(p, q, a) = \delta(Q', r, \overline{Q} \overline{S}) \circ a \]

guessed symbol

\[\delta'(p, q, a) = \delta(Q', q, \overline{Q} \overline{S}(s, b)) \]

backward simulation
1.38 Use the same construction given in the proof of Theorem 1.39, which shows the equivalence of NFAs and DFAs. We need only change F', the set of accept states of the new DFA. Here we let $F' = \mathcal{P}(F)$. The change means that the new DFA accepts only when all of the possible states of the all-NFA are accepting.

1.21 In both parts we first add a new start state and a new accept state. Several solutions are possible, depending on the order states are removed.

a. Here we remove state 1 then state 2 and we obtain
\[a^*b(a \cup ba^*b)^*\]

b. $\Sigma^*0\Sigma^* \cup 1111\Sigma^* \cup 1 \cup \varepsilon$

l. $(1\Sigma)^*(1 \cup \varepsilon)$

Annotate the regular expression.

1.29 b. Let $A_2 = \{www | w \in \{0,1\}^*\}$. We show that A_2 is nonregular using the pumping lemma. Assume to the contrary that A_2 is regular. Let p be the pumping length given by the pumping lemma. Let s be the string a^pba^pb. Because s is a member of A_2 and s has length more than p, the pumping lemma guarantees that s can be split into three pieces, $s = xyz$, satisfying the three conditions of the lemma. However, condition 3 implies that y must consist only of as, so $xyyz \notin A_2$ and one of the first two conditions is violated. Therefore A_2 is nonregular.

1.53 Assume to the contrary that ADD is regular. Let p be the pumping length given by the pumping lemma. Choose s to be the string 1^p0+1^p, which is a member of ADD. Because s has length greater than p, the pumping lemma guarantees that s can be split into three pieces, $s = xyz$, satisfying the conditions of the lemma. By the third condition in the pumping lemma have that $|xy| \leq p$, it follows that y is 1^k for some $k \geq 1$. Then xy^2z is the string $1^{p+k-1}0+1^p$, which is not a member of ADD, violating the pumping lemma. Hence ADD isn't regular.
(a) \[L = \{ uu^Rv \mid u, v \in (01)^* \} \] is regular, since
\[L \] is denoted by a regular expression
\[0(01)^*0 \cup 1(01)^*1. \]

To see that \(L \subseteq L(0(01)^*0 \cup 1(01)^*1) \):

Let \(x \in L \) be arbitrary, i.e., \(x = uu^Rv \) for some \(u, v \in (01)^* \).

Since \(u \in (01)^* \), \(u = 0u' \) or \(u = 1u' \) for some \(u' \in (01)^* \).

Assume \(u = 0u' \) (the case for \(u = 1u' \) is similar).

Then \(x = uu^Rv = 0u'v \in (01)^*1 = 0(01)^*1 \subseteq 0(01)^*1 \).

To see that \(L(0(01)^*0 \cup 1(01)^*1) \subseteq L \):

Let \(x \in L(0(01)^*0 \cup 1(01)^*1) \) be arbitrary.

Assume \(x \in 0(01)^*1 \) (the case for \(x \in 1(01)^*1 \) is similar).

Then \(x = uu^Rv \) where \(u = 0 \) and \(v \in (01)^*1 \).

That is, \(x \in L \).

(b) \[L = \{ uu^Rv \mid u, v \in (01)^* \} \] is not regular. Suppose that it were.

We can apply the Pumping Lemma directly on \(L \). Here we use closure properties for regularity first to "reduce" \(L \) into \(L' \):

Consider \(L' = L \cap 1(0^2)^*1 (1^2)^*011 \).

Certainly \(L' \) would be regular since "\(\cap \)" preserves regularity.

But, what is \(L' \) (or, why do we consider \(\cap 1(0^2)^*1 (1^2)^*011 \))?

Try \(x \in L' \).

The string \(x \) is of the form \(uu^Rv \):

Hence \(L' = \{ 10^{2t+1} 1110^{2t+1} \mid n > 0 \} \)

Now, apply the Pumping Lemma on \(L' \) (remember, there are many cases to check).
Problem 9.

(a) We prove the non-regularity of \(L = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \} \) by contradiction via the closure properties (a regular)

Suppose that \(L \) were regular.

Then \(L = \{a, b\}^* - L \) would be regular.

Regular closure

\((a+b)^* \)

preserving

- What is \(L \)?

\[L = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \} \]

Hence, we consider

\[L \cap \{a, b\}^* = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \} \]

Regular closure

\((a+b)^* \)

preserving

\[= \{a^i b^i \mid i \geq 0 \} \]

a non-regular

Thus, \(L \) is not regular.